Ryan H DeBlock, Hunter O Ford, Meghanne E Tighe, Debra R Rolison, Jeffrey W Long
{"title":"用于储能的纳米级 Li2FeS2 的另一种合成途径。","authors":"Ryan H DeBlock, Hunter O Ford, Meghanne E Tighe, Debra R Rolison, Jeffrey W Long","doi":"10.1039/d4cc04748f","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium-rich iron sulphide, Li<sub>2</sub>FeS<sub>2</sub>, exhibits reversible charge-storage <i>via</i> both cationic and anionic sites, storing nearly 400 mA h g<sup>-1</sup>, but its synthesis is limited to solid-state methods that result in large primary particles. We describe an alternate solution-based, redox-mediated method to lithiate pyrite FeS<sub>2</sub>, ultimately forming nanoscale Li<sub>2</sub>FeS<sub>2</sub>.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An alternate synthetic pathway to nanoscopic Li<sub>2</sub>FeS<sub>2</sub> for energy storage.\",\"authors\":\"Ryan H DeBlock, Hunter O Ford, Meghanne E Tighe, Debra R Rolison, Jeffrey W Long\",\"doi\":\"10.1039/d4cc04748f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lithium-rich iron sulphide, Li<sub>2</sub>FeS<sub>2</sub>, exhibits reversible charge-storage <i>via</i> both cationic and anionic sites, storing nearly 400 mA h g<sup>-1</sup>, but its synthesis is limited to solid-state methods that result in large primary particles. We describe an alternate solution-based, redox-mediated method to lithiate pyrite FeS<sub>2</sub>, ultimately forming nanoscale Li<sub>2</sub>FeS<sub>2</sub>.</p>\",\"PeriodicalId\":67,\"journal\":{\"name\":\"Chemical Communications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cc04748f\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cc04748f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
富锂硫化铁(Li2FeS2)通过阳离子和阴离子位点表现出可逆的电荷存储能力,可存储近 400 mA h g-1,但其合成仅限于固态方法,会产生较大的原生颗粒。我们介绍了另一种基于溶液、以氧化还原为介导的方法来使黄铁矿 FeS2 锂化,最终形成纳米级的 Li2FeS2。
An alternate synthetic pathway to nanoscopic Li2FeS2 for energy storage.
Lithium-rich iron sulphide, Li2FeS2, exhibits reversible charge-storage via both cationic and anionic sites, storing nearly 400 mA h g-1, but its synthesis is limited to solid-state methods that result in large primary particles. We describe an alternate solution-based, redox-mediated method to lithiate pyrite FeS2, ultimately forming nanoscale Li2FeS2.
期刊介绍:
ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.