Chen Qiu, Xuan Wang, Tianzi Ma, Yaojun Wen, Jiajia Zhang
{"title":"将反事实后悔最小化与信息增益相结合,解决未知环境下的广泛博弈问题","authors":"Chen Qiu, Xuan Wang, Tianzi Ma, Yaojun Wen, Jiajia Zhang","doi":"10.1155/int/9482323","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Counterfactual regret minimization (CFR) is an effective algorithm for solving extensive-form games with imperfect information (IIEGs). However, CFR is only allowed to be applied in known environments, where the transition function of the chance player and the reward function of the terminal node in IIEGs are known. In uncertain situations, such as reinforcement learning (RL) problems, CFR is not applicable. Thus, applying CFR in unknown environments is a significant challenge that can also address some difficulties in the real world. Currently, advanced solutions require more interactions with the environment and are limited by large single-sampling variances to narrow the gap with the real environment. In this paper, we propose a method that combines CFR with information gain to compute the Nash equilibrium (NE) of IIEGs with unknown environments. We use a curiosity-driven approach to explore unknown environments and minimize the discrepancy between uncertain and real environments. In addition, by incorporating information into the reward, the average strategy calculated by CFR can be directly implemented as the interaction policy with the environment, thereby improving the exploration efficiency of our method in uncertain environments. Through experiments on standard testbeds such as Kuhn poker and Leduc poker, our method significantly reduces the number of interactions with the environment compared to the different baselines and computes a more accurate approximate NE within the same number of interaction rounds.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/9482323","citationCount":"0","resultStr":"{\"title\":\"Combining Counterfactual Regret Minimization With Information Gain to Solve Extensive Games With Unknown Environments\",\"authors\":\"Chen Qiu, Xuan Wang, Tianzi Ma, Yaojun Wen, Jiajia Zhang\",\"doi\":\"10.1155/int/9482323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Counterfactual regret minimization (CFR) is an effective algorithm for solving extensive-form games with imperfect information (IIEGs). However, CFR is only allowed to be applied in known environments, where the transition function of the chance player and the reward function of the terminal node in IIEGs are known. In uncertain situations, such as reinforcement learning (RL) problems, CFR is not applicable. Thus, applying CFR in unknown environments is a significant challenge that can also address some difficulties in the real world. Currently, advanced solutions require more interactions with the environment and are limited by large single-sampling variances to narrow the gap with the real environment. In this paper, we propose a method that combines CFR with information gain to compute the Nash equilibrium (NE) of IIEGs with unknown environments. We use a curiosity-driven approach to explore unknown environments and minimize the discrepancy between uncertain and real environments. In addition, by incorporating information into the reward, the average strategy calculated by CFR can be directly implemented as the interaction policy with the environment, thereby improving the exploration efficiency of our method in uncertain environments. Through experiments on standard testbeds such as Kuhn poker and Leduc poker, our method significantly reduces the number of interactions with the environment compared to the different baselines and computes a more accurate approximate NE within the same number of interaction rounds.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/9482323\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/9482323\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/9482323","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Combining Counterfactual Regret Minimization With Information Gain to Solve Extensive Games With Unknown Environments
Counterfactual regret minimization (CFR) is an effective algorithm for solving extensive-form games with imperfect information (IIEGs). However, CFR is only allowed to be applied in known environments, where the transition function of the chance player and the reward function of the terminal node in IIEGs are known. In uncertain situations, such as reinforcement learning (RL) problems, CFR is not applicable. Thus, applying CFR in unknown environments is a significant challenge that can also address some difficulties in the real world. Currently, advanced solutions require more interactions with the environment and are limited by large single-sampling variances to narrow the gap with the real environment. In this paper, we propose a method that combines CFR with information gain to compute the Nash equilibrium (NE) of IIEGs with unknown environments. We use a curiosity-driven approach to explore unknown environments and minimize the discrepancy between uncertain and real environments. In addition, by incorporating information into the reward, the average strategy calculated by CFR can be directly implemented as the interaction policy with the environment, thereby improving the exploration efficiency of our method in uncertain environments. Through experiments on standard testbeds such as Kuhn poker and Leduc poker, our method significantly reduces the number of interactions with the environment compared to the different baselines and computes a more accurate approximate NE within the same number of interaction rounds.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.