{"title":"利用模型参考自适应控制器对有参数变化的万向节进行精确定位控制","authors":"Ömer Çakmak, Erdinç Altuğ","doi":"10.1049/cth2.12745","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on a model reference adaptive control method that ensures identical orientation outputs for different prototypes of a two-axis gimbal produced in mass production. In this method, unlike traditional MRAC structures, an MRAC structure is used in conjunction with state feedback control. First, the reasons for the need for an adaptation mechanism in gimbals and why Model Reference Adaptive Control (MRAC) alone won't be sufficient have been discussed. In the first section, various applications of MRAC have also been mentioned. Then, the mathematical foundation of the model reference adaptive controller used in this study is elaborately explained, followed by stability analyses. In the next step, an ideal reference model exhibiting desired behavior and a real system model with different dynamics are created in a simulation environment. This allows a comparison of the adaptation capabilities of only MRAC and MRAC+State Feedback controllers. Based on the information gathered in this section, the recommended approach in the article is tested on a real gimbal system, and the results are shared. The obtained results demonstrate that the MRAC+State Feedback control structure significantly reduces the error in the gimbal's orientation response compared to the reference model.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 17","pages":"2422-2432"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12745","citationCount":"0","resultStr":"{\"title\":\"Precise orientation control of gimbals with parametric variations using model reference adaptive controller\",\"authors\":\"Ömer Çakmak, Erdinç Altuğ\",\"doi\":\"10.1049/cth2.12745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focuses on a model reference adaptive control method that ensures identical orientation outputs for different prototypes of a two-axis gimbal produced in mass production. In this method, unlike traditional MRAC structures, an MRAC structure is used in conjunction with state feedback control. First, the reasons for the need for an adaptation mechanism in gimbals and why Model Reference Adaptive Control (MRAC) alone won't be sufficient have been discussed. In the first section, various applications of MRAC have also been mentioned. Then, the mathematical foundation of the model reference adaptive controller used in this study is elaborately explained, followed by stability analyses. In the next step, an ideal reference model exhibiting desired behavior and a real system model with different dynamics are created in a simulation environment. This allows a comparison of the adaptation capabilities of only MRAC and MRAC+State Feedback controllers. Based on the information gathered in this section, the recommended approach in the article is tested on a real gimbal system, and the results are shared. The obtained results demonstrate that the MRAC+State Feedback control structure significantly reduces the error in the gimbal's orientation response compared to the reference model.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"18 17\",\"pages\":\"2422-2432\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12745\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12745\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12745","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Precise orientation control of gimbals with parametric variations using model reference adaptive controller
This study focuses on a model reference adaptive control method that ensures identical orientation outputs for different prototypes of a two-axis gimbal produced in mass production. In this method, unlike traditional MRAC structures, an MRAC structure is used in conjunction with state feedback control. First, the reasons for the need for an adaptation mechanism in gimbals and why Model Reference Adaptive Control (MRAC) alone won't be sufficient have been discussed. In the first section, various applications of MRAC have also been mentioned. Then, the mathematical foundation of the model reference adaptive controller used in this study is elaborately explained, followed by stability analyses. In the next step, an ideal reference model exhibiting desired behavior and a real system model with different dynamics are created in a simulation environment. This allows a comparison of the adaptation capabilities of only MRAC and MRAC+State Feedback controllers. Based on the information gathered in this section, the recommended approach in the article is tested on a real gimbal system, and the results are shared. The obtained results demonstrate that the MRAC+State Feedback control structure significantly reduces the error in the gimbal's orientation response compared to the reference model.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.