Muhammad Aamir Iqbal , Yujia Zhai , Pengyun Wang , Jianrong Qiu , Xiaofeng Liu
{"title":"双掺杂氧化锌玻璃陶瓷中增强的超快非线性光学响应","authors":"Muhammad Aamir Iqbal , Yujia Zhai , Pengyun Wang , Jianrong Qiu , Xiaofeng Liu","doi":"10.1016/j.optmat.2024.116447","DOIUrl":null,"url":null,"abstract":"<div><div>Incorporating plasmonic nanocrystals (NCs) into solid-state electronics is an important step toward realizing nanophotonic devices. However, only a few noble metal-based systems can directly precipitate plasmonic NCs in a solid transparent medium. In contrast, plasmonic metal oxide NCs can exhibit a plasmonic response at infrared energies that noble metal-based systems cannot reach due to their high carrier concentration. Here we demonstrate the precipitation of bismuth-doped ZnO (BZO) NCs in an aluminosilicate glass matrix, demonstrating a robust near-infrared (NIR)-localized surface plasmon resonance. Benefited from the strong resonant absorption by the plasmonic BZO NCs, these glass ceramics (GCs) exhibit enhanced ultrafast nonlinear optical (NLO) response across the NIR optical communication bands, which might be promising for applications such as optical limiting, optical switching, optical modulation, and NIR-nanophotonic devices.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"158 ","pages":"Article 116447"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced ultrafast nonlinear optical response in Bi-doped ZnO glass-ceramics\",\"authors\":\"Muhammad Aamir Iqbal , Yujia Zhai , Pengyun Wang , Jianrong Qiu , Xiaofeng Liu\",\"doi\":\"10.1016/j.optmat.2024.116447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Incorporating plasmonic nanocrystals (NCs) into solid-state electronics is an important step toward realizing nanophotonic devices. However, only a few noble metal-based systems can directly precipitate plasmonic NCs in a solid transparent medium. In contrast, plasmonic metal oxide NCs can exhibit a plasmonic response at infrared energies that noble metal-based systems cannot reach due to their high carrier concentration. Here we demonstrate the precipitation of bismuth-doped ZnO (BZO) NCs in an aluminosilicate glass matrix, demonstrating a robust near-infrared (NIR)-localized surface plasmon resonance. Benefited from the strong resonant absorption by the plasmonic BZO NCs, these glass ceramics (GCs) exhibit enhanced ultrafast nonlinear optical (NLO) response across the NIR optical communication bands, which might be promising for applications such as optical limiting, optical switching, optical modulation, and NIR-nanophotonic devices.</div></div>\",\"PeriodicalId\":19564,\"journal\":{\"name\":\"Optical Materials\",\"volume\":\"158 \",\"pages\":\"Article 116447\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925346724016306\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724016306","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced ultrafast nonlinear optical response in Bi-doped ZnO glass-ceramics
Incorporating plasmonic nanocrystals (NCs) into solid-state electronics is an important step toward realizing nanophotonic devices. However, only a few noble metal-based systems can directly precipitate plasmonic NCs in a solid transparent medium. In contrast, plasmonic metal oxide NCs can exhibit a plasmonic response at infrared energies that noble metal-based systems cannot reach due to their high carrier concentration. Here we demonstrate the precipitation of bismuth-doped ZnO (BZO) NCs in an aluminosilicate glass matrix, demonstrating a robust near-infrared (NIR)-localized surface plasmon resonance. Benefited from the strong resonant absorption by the plasmonic BZO NCs, these glass ceramics (GCs) exhibit enhanced ultrafast nonlinear optical (NLO) response across the NIR optical communication bands, which might be promising for applications such as optical limiting, optical switching, optical modulation, and NIR-nanophotonic devices.
期刊介绍:
Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials.
OPTICAL MATERIALS focuses on:
• Optical Properties of Material Systems;
• The Materials Aspects of Optical Phenomena;
• The Materials Aspects of Devices and Applications.
Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.