Shijiao Zhao , SiZhuo Chen , Theyab R Alsenani , Badr Alotaibi , Mohammed Abuhussain
{"title":"基于能源互联网的智能家居中的住宅能源消耗和价格预测","authors":"Shijiao Zhao , SiZhuo Chen , Theyab R Alsenani , Badr Alotaibi , Mohammed Abuhussain","doi":"10.1016/j.seta.2024.104081","DOIUrl":null,"url":null,"abstract":"<div><div>Smart home applications require automatic energy management and control of unwanted energy consumption prices using Artificial intelligence techniques. Previously, there were more studies on price forecasting. However, efficient results are still under research. This study introduces real-time residential energy management systems based on the Internet of Energy with a scheduling strategy. The proposed method employs a Gated Recurrent Unit and Bird Swarm Optimizer (GRU-BSO) along with Real-Time Electricity Scheduling (RTES) based on Price Forecasting (PF) for efficient residential energy management. The research emphasises the optimisation algorithm’s ability to minimise energy costs and promote energy conservation, significantly contributing to the field. Price forecasting (PF) is the central objective in distributed energy production. By forecasting the optimal price, this approach can improve the efficiency of power grids and solve issues with microgrid management and planning. It is suggested that the tariffs for shoulder-peak and on-peak hours be determined using the Time of Use (ToU) model. The proposed method also predicts the energy price used in home energy management. The cloud server and MATLAB-implemented microgrid system are linked via a two-level communications network. The current communications level uses the local communication level as a protocol, which uses IP/TCP and MQTT. The study’s proposed scheduling controller successfully achieved energy savings of 17 kW and 47 cents by utilising the proposed method.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"73 ","pages":"Article 104081"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residential energy consumption and price forecasting in smart homes based on the internet of energy\",\"authors\":\"Shijiao Zhao , SiZhuo Chen , Theyab R Alsenani , Badr Alotaibi , Mohammed Abuhussain\",\"doi\":\"10.1016/j.seta.2024.104081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Smart home applications require automatic energy management and control of unwanted energy consumption prices using Artificial intelligence techniques. Previously, there were more studies on price forecasting. However, efficient results are still under research. This study introduces real-time residential energy management systems based on the Internet of Energy with a scheduling strategy. The proposed method employs a Gated Recurrent Unit and Bird Swarm Optimizer (GRU-BSO) along with Real-Time Electricity Scheduling (RTES) based on Price Forecasting (PF) for efficient residential energy management. The research emphasises the optimisation algorithm’s ability to minimise energy costs and promote energy conservation, significantly contributing to the field. Price forecasting (PF) is the central objective in distributed energy production. By forecasting the optimal price, this approach can improve the efficiency of power grids and solve issues with microgrid management and planning. It is suggested that the tariffs for shoulder-peak and on-peak hours be determined using the Time of Use (ToU) model. The proposed method also predicts the energy price used in home energy management. The cloud server and MATLAB-implemented microgrid system are linked via a two-level communications network. The current communications level uses the local communication level as a protocol, which uses IP/TCP and MQTT. The study’s proposed scheduling controller successfully achieved energy savings of 17 kW and 47 cents by utilising the proposed method.</div></div>\",\"PeriodicalId\":56019,\"journal\":{\"name\":\"Sustainable Energy Technologies and Assessments\",\"volume\":\"73 \",\"pages\":\"Article 104081\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Technologies and Assessments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213138824004776\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138824004776","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Residential energy consumption and price forecasting in smart homes based on the internet of energy
Smart home applications require automatic energy management and control of unwanted energy consumption prices using Artificial intelligence techniques. Previously, there were more studies on price forecasting. However, efficient results are still under research. This study introduces real-time residential energy management systems based on the Internet of Energy with a scheduling strategy. The proposed method employs a Gated Recurrent Unit and Bird Swarm Optimizer (GRU-BSO) along with Real-Time Electricity Scheduling (RTES) based on Price Forecasting (PF) for efficient residential energy management. The research emphasises the optimisation algorithm’s ability to minimise energy costs and promote energy conservation, significantly contributing to the field. Price forecasting (PF) is the central objective in distributed energy production. By forecasting the optimal price, this approach can improve the efficiency of power grids and solve issues with microgrid management and planning. It is suggested that the tariffs for shoulder-peak and on-peak hours be determined using the Time of Use (ToU) model. The proposed method also predicts the energy price used in home energy management. The cloud server and MATLAB-implemented microgrid system are linked via a two-level communications network. The current communications level uses the local communication level as a protocol, which uses IP/TCP and MQTT. The study’s proposed scheduling controller successfully achieved energy savings of 17 kW and 47 cents by utilising the proposed method.
期刊介绍:
Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.