Mohamed J. Saadh , Anjan Kumar , Deepak Bhanot , Jayanti Makasana , Halijah Hassan , Bharti Kumari , G.V. Siva Prasad , Mohammad Hussen , Abdulrahman A. Almehizia
{"title":"通过建模研究优化用于高性能金属钾电池的二氧化硅掺杂 BxCyNz 单层阳极","authors":"Mohamed J. Saadh , Anjan Kumar , Deepak Bhanot , Jayanti Makasana , Halijah Hassan , Bharti Kumari , G.V. Siva Prasad , Mohammad Hussen , Abdulrahman A. Almehizia","doi":"10.1016/j.physb.2024.416756","DOIUrl":null,"url":null,"abstract":"<div><div>Within this piece of research, the performances of pure B<sub>2</sub>CN<sub>3</sub> nanosheet (PB<sub>2</sub>CN<sub>3</sub>NS) and its doped structure with Si atoms (SB<sub>2</sub>CN<sub>3</sub>NS) as the anode materials of K-ion batteries (KIBs) were investigated using DFT. The findings showed that PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS are highly capable of adsorbing K with acceptable adhesion energy (AE). Also, because of the negative adhesion of K<sup>+</sup>, in comparison with K, K<sup>+</sup> donated more electrons on PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS. Based on the results, SB<sub>2</sub>CN<sub>3</sub>NS provided an ideal condition for the K atoms to migrate on the surfaces of PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS because of their lower energy barrier. The computed theoretical storage capacity was approximately 1347 mAh.g<sup>−1</sup> after the adhesion maximum K atoms onto PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS. This value is higher the values reported for many anodes materials fabricant in recent years. The open circuit voltage (V<sub>OC</sub>) of PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS were also found to be low, which were 0.19 and 0.25 V, respectively. The outcomes within this study can provide useful insights into producing highly efficient anodes for KIBs.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"698 ","pages":"Article 416756"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of silica-doped BxCyNz monolayer anode for high-performance potassium metal batteries through modeling study\",\"authors\":\"Mohamed J. Saadh , Anjan Kumar , Deepak Bhanot , Jayanti Makasana , Halijah Hassan , Bharti Kumari , G.V. Siva Prasad , Mohammad Hussen , Abdulrahman A. Almehizia\",\"doi\":\"10.1016/j.physb.2024.416756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Within this piece of research, the performances of pure B<sub>2</sub>CN<sub>3</sub> nanosheet (PB<sub>2</sub>CN<sub>3</sub>NS) and its doped structure with Si atoms (SB<sub>2</sub>CN<sub>3</sub>NS) as the anode materials of K-ion batteries (KIBs) were investigated using DFT. The findings showed that PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS are highly capable of adsorbing K with acceptable adhesion energy (AE). Also, because of the negative adhesion of K<sup>+</sup>, in comparison with K, K<sup>+</sup> donated more electrons on PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS. Based on the results, SB<sub>2</sub>CN<sub>3</sub>NS provided an ideal condition for the K atoms to migrate on the surfaces of PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS because of their lower energy barrier. The computed theoretical storage capacity was approximately 1347 mAh.g<sup>−1</sup> after the adhesion maximum K atoms onto PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS. This value is higher the values reported for many anodes materials fabricant in recent years. The open circuit voltage (V<sub>OC</sub>) of PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS were also found to be low, which were 0.19 and 0.25 V, respectively. The outcomes within this study can provide useful insights into producing highly efficient anodes for KIBs.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"698 \",\"pages\":\"Article 416756\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452624010974\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624010974","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
在这项研究中,使用 DFT 研究了纯 B2CN3 纳米片(PB2CN3NS)及其掺杂硅原子结构(SB2CN3NS)作为 K 离子电池(KIB)阳极材料的性能。研究结果表明,PB2CN3NS 和 SB2CN3NS 能够以可接受的粘附能 (AE) 吸附 K。同时,由于 K+ 的负粘附性,与 K 相比,K+ 在 PB2CN3NS 和 SB2CN3NS 上捐献了更多的电子。根据研究结果,SB2CN3NS 由于能垒较低,为 K 原子在 PB2CN3NS 和 SB2CN3NS 表面迁移提供了理想条件。在 PB2CN3NS 和 SB2CN3NS 上粘附最大 K 原子后,计算得出的理论存储容量约为 1347 mAh.g-1。这一数值高于近年来许多阳极材料的报告值。PB2CN3NS 和 SB2CN3NS 的开路电压(VOC)也较低,分别为 0.19 V 和 0.25 V。这项研究的成果为生产高效的 KIB 阳极提供了有益的启示。
Optimization of silica-doped BxCyNz monolayer anode for high-performance potassium metal batteries through modeling study
Within this piece of research, the performances of pure B2CN3 nanosheet (PB2CN3NS) and its doped structure with Si atoms (SB2CN3NS) as the anode materials of K-ion batteries (KIBs) were investigated using DFT. The findings showed that PB2CN3NS and SB2CN3NS are highly capable of adsorbing K with acceptable adhesion energy (AE). Also, because of the negative adhesion of K+, in comparison with K, K+ donated more electrons on PB2CN3NS and SB2CN3NS. Based on the results, SB2CN3NS provided an ideal condition for the K atoms to migrate on the surfaces of PB2CN3NS and SB2CN3NS because of their lower energy barrier. The computed theoretical storage capacity was approximately 1347 mAh.g−1 after the adhesion maximum K atoms onto PB2CN3NS and SB2CN3NS. This value is higher the values reported for many anodes materials fabricant in recent years. The open circuit voltage (VOC) of PB2CN3NS and SB2CN3NS were also found to be low, which were 0.19 and 0.25 V, respectively. The outcomes within this study can provide useful insights into producing highly efficient anodes for KIBs.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces