用于锂离子电池的高熵富锂层状氧化物阴极

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Jaemin Kim , Songge Yang , Yu Zhong , Geoffrey Tompsett , Seonghun Jeong , Junyoung Mun , Neelam Sunariwal , Jordi Cabana , Zhenzhen Yang , Yan Wang
{"title":"用于锂离子电池的高熵富锂层状氧化物阴极","authors":"Jaemin Kim ,&nbsp;Songge Yang ,&nbsp;Yu Zhong ,&nbsp;Geoffrey Tompsett ,&nbsp;Seonghun Jeong ,&nbsp;Junyoung Mun ,&nbsp;Neelam Sunariwal ,&nbsp;Jordi Cabana ,&nbsp;Zhenzhen Yang ,&nbsp;Yan Wang","doi":"10.1016/j.jpowsour.2024.235915","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy oxides (HEOs) are emerging as promising cathode materials for Li-ion batteries (LIBs) due to their stable solid-state phase and compositional flexibility. Herein, we investigate the structural and electrochemical properties of a novel non-equimolar high-entropy cathode material, termed high-entropy Li-rich layered oxide (HE-LLO, Li<sub>1.15</sub>Na<sub>0.05</sub>Ni<sub>0.19</sub>Mn<sub>0.56</sub>Fe<sub>0.02</sub>Mg<sub>0.02</sub>Al<sub>0.02</sub>O<sub>1.97</sub>F<sub>0.03</sub>), in comparison to a pristine Li-rich layered oxide (PR-LLO, Li<sub>1.2</sub>Ni<sub>0.2</sub>Mn<sub>0.6</sub>O<sub>2</sub>). The incorporation of multiple cations (Na<sup>+</sup>, Al<sup>3+</sup>, Mg<sup>2+</sup>, Fe<sup>3+</sup>) and anion (F<sup>−</sup>) into HE-LLO introduces compositional diversity, enhancing structural stability through the entropy stabilization effect. Theoretical calculations confirm a significantly higher configurational entropy in HE-LLO compared to PR-LLO, supporting its high-entropy nature. Electrochemical evaluations demonstrate that HE-LLO exhibits considerable capacity retention, preserving 76.8 % of its discharge capacity at 0.5C after 200 cycles, compared to only 36.2 % for PR-LLO. Even under high-temperature conditions, HE-LLO outperformed PR-LLO, maintaining 76.1 % of its discharge capacity after 100 cycles at 5C, while PR-LLO retained only 12.4 %. These enhancements are attributed to the improved phase reversibility and higher Li<sup>+</sup> ion diffusion coefficients of HE-LLO, validated by ex-situ characterizations using a synchrotron X-ray technique, along with density functional theory (DFT) calculations. These findings highlight the promise of non-equimolar HEOs as a novel design strategy for high-performance cathode materials.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235915"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-entropy Li-rich layered oxide cathode for Li-ion batteries\",\"authors\":\"Jaemin Kim ,&nbsp;Songge Yang ,&nbsp;Yu Zhong ,&nbsp;Geoffrey Tompsett ,&nbsp;Seonghun Jeong ,&nbsp;Junyoung Mun ,&nbsp;Neelam Sunariwal ,&nbsp;Jordi Cabana ,&nbsp;Zhenzhen Yang ,&nbsp;Yan Wang\",\"doi\":\"10.1016/j.jpowsour.2024.235915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-entropy oxides (HEOs) are emerging as promising cathode materials for Li-ion batteries (LIBs) due to their stable solid-state phase and compositional flexibility. Herein, we investigate the structural and electrochemical properties of a novel non-equimolar high-entropy cathode material, termed high-entropy Li-rich layered oxide (HE-LLO, Li<sub>1.15</sub>Na<sub>0.05</sub>Ni<sub>0.19</sub>Mn<sub>0.56</sub>Fe<sub>0.02</sub>Mg<sub>0.02</sub>Al<sub>0.02</sub>O<sub>1.97</sub>F<sub>0.03</sub>), in comparison to a pristine Li-rich layered oxide (PR-LLO, Li<sub>1.2</sub>Ni<sub>0.2</sub>Mn<sub>0.6</sub>O<sub>2</sub>). The incorporation of multiple cations (Na<sup>+</sup>, Al<sup>3+</sup>, Mg<sup>2+</sup>, Fe<sup>3+</sup>) and anion (F<sup>−</sup>) into HE-LLO introduces compositional diversity, enhancing structural stability through the entropy stabilization effect. Theoretical calculations confirm a significantly higher configurational entropy in HE-LLO compared to PR-LLO, supporting its high-entropy nature. Electrochemical evaluations demonstrate that HE-LLO exhibits considerable capacity retention, preserving 76.8 % of its discharge capacity at 0.5C after 200 cycles, compared to only 36.2 % for PR-LLO. Even under high-temperature conditions, HE-LLO outperformed PR-LLO, maintaining 76.1 % of its discharge capacity after 100 cycles at 5C, while PR-LLO retained only 12.4 %. These enhancements are attributed to the improved phase reversibility and higher Li<sup>+</sup> ion diffusion coefficients of HE-LLO, validated by ex-situ characterizations using a synchrotron X-ray technique, along with density functional theory (DFT) calculations. These findings highlight the promise of non-equimolar HEOs as a novel design strategy for high-performance cathode materials.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"628 \",\"pages\":\"Article 235915\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324018676\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018676","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高熵氧化物(HEOs)因其稳定的固态相和组成的灵活性,正逐渐成为锂离子电池(LIBs)的有前途的阴极材料。在这里,我们研究了一种新型非等摩尔高熵阴极材料的结构和电化学特性,这种材料被称为高熵富锂层状氧化物(HE-LLO,Li1.15Na0.05Ni0.19Mn0.56Fe0.02Mg0.02Al0.02O1.97F0.03),并与原始富锂层状氧化物(PR-LLO,Li1.2Ni0.2Mn0.6O2)进行了比较。在 HE-LLO 中加入多种阳离子(Na+、Al3+、Mg2+、Fe3+)和阴离子(F-)引入了成分多样性,通过熵稳定效应增强了结构稳定性。理论计算证实,与 PR-LLO 相比,HE-LLO 的构型熵明显更高,这支持了它的高熵特性。电化学评估表明,HE-LLO 具有相当高的容量保持率,在 0.5C 温度下循环 200 次后,其放电容量保持率为 76.8%,而 PR-LLO 仅为 36.2%。即使在高温条件下,HE-LLO 的性能也优于 PR-LLO,在 5C 温度下循环 100 次后仍能保持 76.1% 的放电容量,而 PR-LLO 仅能保持 12.4%。这些改进归功于 HE-LLO 改善的相可逆性和更高的 Li+ 离子扩散系数,使用同步辐射 X 射线技术进行的原位表征以及密度泛函理论 (DFT) 计算验证了这一点。这些发现凸显了非等摩尔 HEOs 作为高性能阴极材料的新型设计策略的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-entropy Li-rich layered oxide cathode for Li-ion batteries

High-entropy Li-rich layered oxide cathode for Li-ion batteries
High-entropy oxides (HEOs) are emerging as promising cathode materials for Li-ion batteries (LIBs) due to their stable solid-state phase and compositional flexibility. Herein, we investigate the structural and electrochemical properties of a novel non-equimolar high-entropy cathode material, termed high-entropy Li-rich layered oxide (HE-LLO, Li1.15Na0.05Ni0.19Mn0.56Fe0.02Mg0.02Al0.02O1.97F0.03), in comparison to a pristine Li-rich layered oxide (PR-LLO, Li1.2Ni0.2Mn0.6O2). The incorporation of multiple cations (Na+, Al3+, Mg2+, Fe3+) and anion (F) into HE-LLO introduces compositional diversity, enhancing structural stability through the entropy stabilization effect. Theoretical calculations confirm a significantly higher configurational entropy in HE-LLO compared to PR-LLO, supporting its high-entropy nature. Electrochemical evaluations demonstrate that HE-LLO exhibits considerable capacity retention, preserving 76.8 % of its discharge capacity at 0.5C after 200 cycles, compared to only 36.2 % for PR-LLO. Even under high-temperature conditions, HE-LLO outperformed PR-LLO, maintaining 76.1 % of its discharge capacity after 100 cycles at 5C, while PR-LLO retained only 12.4 %. These enhancements are attributed to the improved phase reversibility and higher Li+ ion diffusion coefficients of HE-LLO, validated by ex-situ characterizations using a synchrotron X-ray technique, along with density functional theory (DFT) calculations. These findings highlight the promise of non-equimolar HEOs as a novel design strategy for high-performance cathode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信