{"title":"无模板合成具有优异锂和钠储存性能的空心二氧化钛微球和无定形二氧化钛微球","authors":"Xiangji Li, Kexin Zhang, Hui Ao, Yanan Gong, Kaifeng Yu, Ce Liang","doi":"10.1016/j.est.2024.114759","DOIUrl":null,"url":null,"abstract":"<div><div>Hierarchical hollow TiO<sub>2</sub> microspheres (H-TiO<sub>2</sub>) and amorphous solid TiO<sub>2</sub> microspheres (A-TiO<sub>2</sub>) were synthesized using a template-free method. Initially, quasi-monodisperse solid TiO<sub>2</sub> microspheres (A-TiO<sub>2</sub>) were obtained by controlled thermal hydrolysis of titanium sulfate, forming aggregates of amorphous particles, followed by solvothermal treatment to convert the solid structure into a hollow and crystalline H-TiO<sub>2</sub> structure. SEM and TEM images revealed that the morphological evolution from A-TiO<sub>2</sub> to H-TiO<sub>2</sub> conforms precisely to the inside-out Ostwald ripening mechanism. The unique hollow layered structure endows H-TiO<sub>2</sub> with a large specific surface area of 93.3 m<sup>2</sup>/g and a rich porous structure. When used as an anode material for LIBs and SIBs, H-TiO<sub>2</sub> exhibits superior cycling stability and rate performance compared to A-TiO<sub>2</sub>. For LIBs, H-TiO<sub>2</sub> achieves a reversible capacity of 342.2 mA h g<sup>−1</sup> at a 0.2C charge/discharge rate and retains unprecedented long-term stability at high current densities (258.5 mA h g<sup>−1</sup> after 1000 cycles at 5C and 220.4 mA h g<sup>−1</sup> after 1000 cycles at 10C). For SIBs, H-TiO<sub>2</sub> exhibits a reversible capacity of 271.7 mA h g<sup>−1</sup> at 0.2C, with specific capacities of 173.4 mA h g<sup>−1</sup> after 1000 cycles at 1C and 101.4 mA h g<sup>−1</sup> after 2000 cycles at 5C. Furthermore, kinetic calculations demonstrate that H-TiO<sub>2</sub> possesses higher Li<sup>+</sup> and Na<sup>+</sup> diffusion rates, adsorption capacities, and conductivity, further explaining its excellent electrochemical performance.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"105 ","pages":"Article 114759"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Template-free synthesis of hollow titanium dioxide microspheres and amorphous titanium dioxide microspheres with superior lithium and sodium storage performance\",\"authors\":\"Xiangji Li, Kexin Zhang, Hui Ao, Yanan Gong, Kaifeng Yu, Ce Liang\",\"doi\":\"10.1016/j.est.2024.114759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hierarchical hollow TiO<sub>2</sub> microspheres (H-TiO<sub>2</sub>) and amorphous solid TiO<sub>2</sub> microspheres (A-TiO<sub>2</sub>) were synthesized using a template-free method. Initially, quasi-monodisperse solid TiO<sub>2</sub> microspheres (A-TiO<sub>2</sub>) were obtained by controlled thermal hydrolysis of titanium sulfate, forming aggregates of amorphous particles, followed by solvothermal treatment to convert the solid structure into a hollow and crystalline H-TiO<sub>2</sub> structure. SEM and TEM images revealed that the morphological evolution from A-TiO<sub>2</sub> to H-TiO<sub>2</sub> conforms precisely to the inside-out Ostwald ripening mechanism. The unique hollow layered structure endows H-TiO<sub>2</sub> with a large specific surface area of 93.3 m<sup>2</sup>/g and a rich porous structure. When used as an anode material for LIBs and SIBs, H-TiO<sub>2</sub> exhibits superior cycling stability and rate performance compared to A-TiO<sub>2</sub>. For LIBs, H-TiO<sub>2</sub> achieves a reversible capacity of 342.2 mA h g<sup>−1</sup> at a 0.2C charge/discharge rate and retains unprecedented long-term stability at high current densities (258.5 mA h g<sup>−1</sup> after 1000 cycles at 5C and 220.4 mA h g<sup>−1</sup> after 1000 cycles at 10C). For SIBs, H-TiO<sub>2</sub> exhibits a reversible capacity of 271.7 mA h g<sup>−1</sup> at 0.2C, with specific capacities of 173.4 mA h g<sup>−1</sup> after 1000 cycles at 1C and 101.4 mA h g<sup>−1</sup> after 2000 cycles at 5C. Furthermore, kinetic calculations demonstrate that H-TiO<sub>2</sub> possesses higher Li<sup>+</sup> and Na<sup>+</sup> diffusion rates, adsorption capacities, and conductivity, further explaining its excellent electrochemical performance.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"105 \",\"pages\":\"Article 114759\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X24043457\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24043457","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
采用无模板法合成了分层空心二氧化钛微球(H-TiO2)和无定形固体二氧化钛微球(A-TiO2)。首先,通过控制硫酸钛的热水解作用获得准单分散固体二氧化钛微球(A-TiO2),形成无定形颗粒聚集体,然后通过溶热处理将固体结构转化为中空结晶的 H-TiO2 结构。SEM 和 TEM 图像显示,从 A-TiO2 到 H-TiO2 的形态演变恰好符合由内而外的奥斯特瓦尔德熟化机制。独特的中空层状结构赋予了 H-TiO2 93.3 m2/g 的大比表面积和丰富的多孔结构。在用作 LIB 和 SIB 的阳极材料时,H-TiO2 与 A-TiO2 相比表现出更优越的循环稳定性和速率性能。对于 LIB,H-TiO2 在 0.2C 充放电速率下可达到 342.2 mA h g-1 的可逆容量,并在高电流密度下保持前所未有的长期稳定性(5C 下循环 1000 次后为 258.5 mA h g-1,10C 下循环 1000 次后为 220.4 mA h g-1)。对于 SIB,H-TiO2 在 0.2C 时的可逆容量为 271.7 mA h g-1,在 1C 下循环 1000 次后的比容量为 173.4 mA h g-1,在 5C 下循环 2000 次后的比容量为 101.4 mA h g-1。此外,动力学计算表明,H-TiO2 具有更高的 Li+ 和 Na+ 扩散速率、吸附容量和电导率,这进一步解释了其优异的电化学性能。
Template-free synthesis of hollow titanium dioxide microspheres and amorphous titanium dioxide microspheres with superior lithium and sodium storage performance
Hierarchical hollow TiO2 microspheres (H-TiO2) and amorphous solid TiO2 microspheres (A-TiO2) were synthesized using a template-free method. Initially, quasi-monodisperse solid TiO2 microspheres (A-TiO2) were obtained by controlled thermal hydrolysis of titanium sulfate, forming aggregates of amorphous particles, followed by solvothermal treatment to convert the solid structure into a hollow and crystalline H-TiO2 structure. SEM and TEM images revealed that the morphological evolution from A-TiO2 to H-TiO2 conforms precisely to the inside-out Ostwald ripening mechanism. The unique hollow layered structure endows H-TiO2 with a large specific surface area of 93.3 m2/g and a rich porous structure. When used as an anode material for LIBs and SIBs, H-TiO2 exhibits superior cycling stability and rate performance compared to A-TiO2. For LIBs, H-TiO2 achieves a reversible capacity of 342.2 mA h g−1 at a 0.2C charge/discharge rate and retains unprecedented long-term stability at high current densities (258.5 mA h g−1 after 1000 cycles at 5C and 220.4 mA h g−1 after 1000 cycles at 10C). For SIBs, H-TiO2 exhibits a reversible capacity of 271.7 mA h g−1 at 0.2C, with specific capacities of 173.4 mA h g−1 after 1000 cycles at 1C and 101.4 mA h g−1 after 2000 cycles at 5C. Furthermore, kinetic calculations demonstrate that H-TiO2 possesses higher Li+ and Na+ diffusion rates, adsorption capacities, and conductivity, further explaining its excellent electrochemical performance.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.