Ibrahim W. Lisheshar, Sina Rouhi, Feridun Ay, Nihan Kosku Perkgöz
{"title":"基于非功能化 MXenes 的高性能超级电容器","authors":"Ibrahim W. Lisheshar, Sina Rouhi, Feridun Ay, Nihan Kosku Perkgöz","doi":"10.1016/j.jpowsour.2024.235894","DOIUrl":null,"url":null,"abstract":"<div><div>MXenes are a group of two-dimensional materials that have attracted significant research interest worldwide due to their intriguing electrochemical characteristics for use in energy storage applications. However, the conductivity of MXenes and their performance as supercapacitor electrodes can be hindered by surface terminations. This study investigates the capability of non-functionalized MXenes, synthesized via chemical vapor deposition for use as supercapacitor electrodes, presenting a novel approach that explores the potential of these materials in energy storage applications. The synthesized MXenes are used to create supercapacitor electrodes, which are subjected to detailed analysis. The specific areal capacitance (SAC) of these electrodes (48.6 nm thick) is found to be 39.5 mFcm<sup>−2</sup> at a scan rate of 2 mVs<sup>−1</sup>, equivalent to 928.4 Fg<sup>-1</sup>. Further investigation using galvanostatic charge-discharge (GCD) analysis reveals an initial specific gravimetric capacitance (SGC) of 442.6 Fg<sup>-1</sup> at a current density of 0.5 Ag<sup>-1</sup>, which progressively decreases to 13.4 Fg<sup>-1</sup> at 10 Ag<sup>-1</sup>. Remarkably, the MXene supercapacitors exhibit excellent stability over 10,000 charge-discharge cycles, retaining 85 % of their initial capacitance. These findings contribute to our understanding of MXene-based energy storage devices and pave the way for practical applications in high-performance supercapacitors.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235894"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance supercapacitors based on nonfunctionalized MXenes\",\"authors\":\"Ibrahim W. Lisheshar, Sina Rouhi, Feridun Ay, Nihan Kosku Perkgöz\",\"doi\":\"10.1016/j.jpowsour.2024.235894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MXenes are a group of two-dimensional materials that have attracted significant research interest worldwide due to their intriguing electrochemical characteristics for use in energy storage applications. However, the conductivity of MXenes and their performance as supercapacitor electrodes can be hindered by surface terminations. This study investigates the capability of non-functionalized MXenes, synthesized via chemical vapor deposition for use as supercapacitor electrodes, presenting a novel approach that explores the potential of these materials in energy storage applications. The synthesized MXenes are used to create supercapacitor electrodes, which are subjected to detailed analysis. The specific areal capacitance (SAC) of these electrodes (48.6 nm thick) is found to be 39.5 mFcm<sup>−2</sup> at a scan rate of 2 mVs<sup>−1</sup>, equivalent to 928.4 Fg<sup>-1</sup>. Further investigation using galvanostatic charge-discharge (GCD) analysis reveals an initial specific gravimetric capacitance (SGC) of 442.6 Fg<sup>-1</sup> at a current density of 0.5 Ag<sup>-1</sup>, which progressively decreases to 13.4 Fg<sup>-1</sup> at 10 Ag<sup>-1</sup>. Remarkably, the MXene supercapacitors exhibit excellent stability over 10,000 charge-discharge cycles, retaining 85 % of their initial capacitance. These findings contribute to our understanding of MXene-based energy storage devices and pave the way for practical applications in high-performance supercapacitors.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"628 \",\"pages\":\"Article 235894\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324018469\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018469","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
High-performance supercapacitors based on nonfunctionalized MXenes
MXenes are a group of two-dimensional materials that have attracted significant research interest worldwide due to their intriguing electrochemical characteristics for use in energy storage applications. However, the conductivity of MXenes and their performance as supercapacitor electrodes can be hindered by surface terminations. This study investigates the capability of non-functionalized MXenes, synthesized via chemical vapor deposition for use as supercapacitor electrodes, presenting a novel approach that explores the potential of these materials in energy storage applications. The synthesized MXenes are used to create supercapacitor electrodes, which are subjected to detailed analysis. The specific areal capacitance (SAC) of these electrodes (48.6 nm thick) is found to be 39.5 mFcm−2 at a scan rate of 2 mVs−1, equivalent to 928.4 Fg-1. Further investigation using galvanostatic charge-discharge (GCD) analysis reveals an initial specific gravimetric capacitance (SGC) of 442.6 Fg-1 at a current density of 0.5 Ag-1, which progressively decreases to 13.4 Fg-1 at 10 Ag-1. Remarkably, the MXene supercapacitors exhibit excellent stability over 10,000 charge-discharge cycles, retaining 85 % of their initial capacitance. These findings contribute to our understanding of MXene-based energy storage devices and pave the way for practical applications in high-performance supercapacitors.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems