Tuany Gabriela Hoffmann , Manfred Linke , Ulrike Praeger , Akshay D. Sonawane , Felix Büchele , Daniel Alexandre Neuwald , Reiner Jedermann , Barbara Sturm , Pramod V. Mahajan
{"title":"苹果冷却过程中大型果仓的热量传递","authors":"Tuany Gabriela Hoffmann , Manfred Linke , Ulrike Praeger , Akshay D. Sonawane , Felix Büchele , Daniel Alexandre Neuwald , Reiner Jedermann , Barbara Sturm , Pramod V. Mahajan","doi":"10.1016/j.ijrefrig.2024.11.023","DOIUrl":null,"url":null,"abstract":"<div><div>The preservation of apples in cold storage relies deeply on understanding the thermal dynamics governing their environment. Within packaging, apples engage in complex thermal interactions, between themselves and the environment, affecting convective and conductive heat transfer pathways. Challenges escalate in industrial cold storage facilities, manifesting as temperature stratification and non-uniform cooling. Nonetheless, a comprehensive understanding of heat transfer dynamics is vital for optimizing cold storage equipment design and enhancing cooling system operation efficacy. Building upon previous studies validating the use of Peltier elements for detecting and quantifying heat flux in individual apples, this research extends its application to industrial cold rooms. By strategically selecting locations within the apple bin and the storage cold room and comparing changes in total heat content obtained by a conventional method and comparing with the Peltier element for its validation. Results of the convective heat transfer coefficient in an upper-layer bin were in the range of 2.7-5.9 Wm<sup>-2</sup> K<sup>-1</sup> while in a bin at door level were 5.0-7.0 Wm<sup>-2</sup> K<sup>-1</sup>. The higher values found in the position near the door can be correlated to the faster air speed experienced between the apples in this position. By applying these values in the transient heat transfer model to predict the fruit core temperature during the cooling process, a relatable prediction was found, with apple temperature difference <0.9 °C between predicted by the Peltier element and experimental cooling curves. This study can aid understanding of thermal dynamics in cold storage environments, and support future development for more efficient and sustainable cold storage practices.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"170 ","pages":"Pages 60-69"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat transfer in large bins during the apples cool-down process\",\"authors\":\"Tuany Gabriela Hoffmann , Manfred Linke , Ulrike Praeger , Akshay D. Sonawane , Felix Büchele , Daniel Alexandre Neuwald , Reiner Jedermann , Barbara Sturm , Pramod V. Mahajan\",\"doi\":\"10.1016/j.ijrefrig.2024.11.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The preservation of apples in cold storage relies deeply on understanding the thermal dynamics governing their environment. Within packaging, apples engage in complex thermal interactions, between themselves and the environment, affecting convective and conductive heat transfer pathways. Challenges escalate in industrial cold storage facilities, manifesting as temperature stratification and non-uniform cooling. Nonetheless, a comprehensive understanding of heat transfer dynamics is vital for optimizing cold storage equipment design and enhancing cooling system operation efficacy. Building upon previous studies validating the use of Peltier elements for detecting and quantifying heat flux in individual apples, this research extends its application to industrial cold rooms. By strategically selecting locations within the apple bin and the storage cold room and comparing changes in total heat content obtained by a conventional method and comparing with the Peltier element for its validation. Results of the convective heat transfer coefficient in an upper-layer bin were in the range of 2.7-5.9 Wm<sup>-2</sup> K<sup>-1</sup> while in a bin at door level were 5.0-7.0 Wm<sup>-2</sup> K<sup>-1</sup>. The higher values found in the position near the door can be correlated to the faster air speed experienced between the apples in this position. By applying these values in the transient heat transfer model to predict the fruit core temperature during the cooling process, a relatable prediction was found, with apple temperature difference <0.9 °C between predicted by the Peltier element and experimental cooling curves. This study can aid understanding of thermal dynamics in cold storage environments, and support future development for more efficient and sustainable cold storage practices.</div></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":\"170 \",\"pages\":\"Pages 60-69\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724004110\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724004110","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Heat transfer in large bins during the apples cool-down process
The preservation of apples in cold storage relies deeply on understanding the thermal dynamics governing their environment. Within packaging, apples engage in complex thermal interactions, between themselves and the environment, affecting convective and conductive heat transfer pathways. Challenges escalate in industrial cold storage facilities, manifesting as temperature stratification and non-uniform cooling. Nonetheless, a comprehensive understanding of heat transfer dynamics is vital for optimizing cold storage equipment design and enhancing cooling system operation efficacy. Building upon previous studies validating the use of Peltier elements for detecting and quantifying heat flux in individual apples, this research extends its application to industrial cold rooms. By strategically selecting locations within the apple bin and the storage cold room and comparing changes in total heat content obtained by a conventional method and comparing with the Peltier element for its validation. Results of the convective heat transfer coefficient in an upper-layer bin were in the range of 2.7-5.9 Wm-2 K-1 while in a bin at door level were 5.0-7.0 Wm-2 K-1. The higher values found in the position near the door can be correlated to the faster air speed experienced between the apples in this position. By applying these values in the transient heat transfer model to predict the fruit core temperature during the cooling process, a relatable prediction was found, with apple temperature difference <0.9 °C between predicted by the Peltier element and experimental cooling curves. This study can aid understanding of thermal dynamics in cold storage environments, and support future development for more efficient and sustainable cold storage practices.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.