Shengxi Meng , Hao Ruan , Qiannan Yu , Qiang Zhao , Caihong Wang , Yong Wu , Shuai Tan
{"title":"用于锂离子电池的具有先进性能的层状封闭离子液体电解质","authors":"Shengxi Meng , Hao Ruan , Qiannan Yu , Qiang Zhao , Caihong Wang , Yong Wu , Shuai Tan","doi":"10.1016/j.jpowsour.2024.235866","DOIUrl":null,"url":null,"abstract":"<div><div>Ionic liquids are promising to rival traditional organic solvent to develop safe electrolytes for Li-ion batteries. However, the ionic liquid-based electrolytes still suffered from issues of inferior performance and potential leakage. Here, non-ionic surfactant Brij58 was introduced into ionic liquid electrolytes (BMPTFSI/LiTFSI) consisting of 1-butyl-1-methylpyrrolidinium bistriflimide (BMPTFSI) and LiTFSI salt to construct solid-state lyotropic liquid crystals (LLCs). Self-assembly of Brij58 in ionic liquid electrolytes constructed lamellar nanostructures, which confined the ionic liquid electrolytes to form layered conducting channels. The nanoscale layered conducting channels in solid-state LLC electrolytes endowed liquid-like ion conductivity and significantly improved Li-ion transfer. Although the LLC electrolytes only consumed 50 wt % BMPTFSI/LiTFSI, the discharge capacities and rate performance of the Li-ion batteries based on LLC electrolytes was much improved comparing to that containing pristine BMPTFSI/LiTFSI. Also, the flame-retardant feature retained within the lamellar LLC electrolytes. The work paved new way for optimizing the conducting performance of IL electrolytes by constructing lamellar lyotropic LLC nanostructures.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235866"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lamellar confined ionic liquid electrolytes with advanced performance for Li-ion batteries\",\"authors\":\"Shengxi Meng , Hao Ruan , Qiannan Yu , Qiang Zhao , Caihong Wang , Yong Wu , Shuai Tan\",\"doi\":\"10.1016/j.jpowsour.2024.235866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ionic liquids are promising to rival traditional organic solvent to develop safe electrolytes for Li-ion batteries. However, the ionic liquid-based electrolytes still suffered from issues of inferior performance and potential leakage. Here, non-ionic surfactant Brij58 was introduced into ionic liquid electrolytes (BMPTFSI/LiTFSI) consisting of 1-butyl-1-methylpyrrolidinium bistriflimide (BMPTFSI) and LiTFSI salt to construct solid-state lyotropic liquid crystals (LLCs). Self-assembly of Brij58 in ionic liquid electrolytes constructed lamellar nanostructures, which confined the ionic liquid electrolytes to form layered conducting channels. The nanoscale layered conducting channels in solid-state LLC electrolytes endowed liquid-like ion conductivity and significantly improved Li-ion transfer. Although the LLC electrolytes only consumed 50 wt % BMPTFSI/LiTFSI, the discharge capacities and rate performance of the Li-ion batteries based on LLC electrolytes was much improved comparing to that containing pristine BMPTFSI/LiTFSI. Also, the flame-retardant feature retained within the lamellar LLC electrolytes. The work paved new way for optimizing the conducting performance of IL electrolytes by constructing lamellar lyotropic LLC nanostructures.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"628 \",\"pages\":\"Article 235866\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324018184\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018184","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Lamellar confined ionic liquid electrolytes with advanced performance for Li-ion batteries
Ionic liquids are promising to rival traditional organic solvent to develop safe electrolytes for Li-ion batteries. However, the ionic liquid-based electrolytes still suffered from issues of inferior performance and potential leakage. Here, non-ionic surfactant Brij58 was introduced into ionic liquid electrolytes (BMPTFSI/LiTFSI) consisting of 1-butyl-1-methylpyrrolidinium bistriflimide (BMPTFSI) and LiTFSI salt to construct solid-state lyotropic liquid crystals (LLCs). Self-assembly of Brij58 in ionic liquid electrolytes constructed lamellar nanostructures, which confined the ionic liquid electrolytes to form layered conducting channels. The nanoscale layered conducting channels in solid-state LLC electrolytes endowed liquid-like ion conductivity and significantly improved Li-ion transfer. Although the LLC electrolytes only consumed 50 wt % BMPTFSI/LiTFSI, the discharge capacities and rate performance of the Li-ion batteries based on LLC electrolytes was much improved comparing to that containing pristine BMPTFSI/LiTFSI. Also, the flame-retardant feature retained within the lamellar LLC electrolytes. The work paved new way for optimizing the conducting performance of IL electrolytes by constructing lamellar lyotropic LLC nanostructures.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems