揭开电池直流内阻之谜:机器学习驱动的孔隙网络方法

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Meiyuan Jiao , Pan Huang , Zheyuan Pang , Sijing Wang , Honglai Liu , Yiting Lin , Cheng Lian
{"title":"揭开电池直流内阻之谜:机器学习驱动的孔隙网络方法","authors":"Meiyuan Jiao ,&nbsp;Pan Huang ,&nbsp;Zheyuan Pang ,&nbsp;Sijing Wang ,&nbsp;Honglai Liu ,&nbsp;Yiting Lin ,&nbsp;Cheng Lian","doi":"10.1016/j.jpowsour.2024.235891","DOIUrl":null,"url":null,"abstract":"<div><div>Direct current internal resistance (DCIR), as a fundamental characteristic of lithium-ion batteries, serves as a critical indicator for the accurate estimation and prediction of battery health. The DCIR of a battery is affected by the electrode structure. Despite its significance, the relationship between the electrode structure and the DCIR during charging and discharging remains unclear. Based on a pore network model of a lithium manganate cell, this work focuses on the cathode and quantifies the effects of cathode thickness (<span><math><mrow><mi>L</mi></mrow></math></span>), porosity (<span><math><mrow><mi>ε</mi></mrow></math></span>), connectivity (<span><math><mrow><mi>G</mi></mrow></math></span>), average particle size (<span><math><mrow><mi>d</mi></mrow></math></span>) and specific surface area (<span><math><mrow><mi>S</mi><mo>/</mo><mi>V</mi></mrow></math></span>) on DCIR. Combined with machine learning, this work identify that cathode thickness, porosity and average particle size the primary determinants of the DCIR, and the formulas for calculating charging and discharging DCIR are derived, <span><math><mrow><msub><mtext>DCIR</mtext><mtext>Charge</mtext></msub><mo>=</mo><mn>0.168</mn><msup><mrow><mi>L</mi><mi>d</mi></mrow><mn>4</mn></msup><mo>/</mo><msup><mi>ε</mi><mn>2.5</mn></msup></mrow></math></span> and <span><math><mrow><msub><mtext>DCIR</mtext><mtext>Discharge</mtext></msub><mo>=</mo><mn>0.072</mn><msup><mrow><mi>L</mi><mi>d</mi></mrow><mn>3</mn></msup><mo>/</mo><msup><mi>ε</mi><mn>2</mn></msup></mrow></math></span>. This work proposes a research framework for predicting DCIR from the electrode structure, which is applicable to most porous electrode batteries, providing a theoretical basis for calculating the DCIR and is of great significance for electrode design.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235891"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering the battery direct current internal resistance puzzle: A machine learning-driven pore network approach\",\"authors\":\"Meiyuan Jiao ,&nbsp;Pan Huang ,&nbsp;Zheyuan Pang ,&nbsp;Sijing Wang ,&nbsp;Honglai Liu ,&nbsp;Yiting Lin ,&nbsp;Cheng Lian\",\"doi\":\"10.1016/j.jpowsour.2024.235891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Direct current internal resistance (DCIR), as a fundamental characteristic of lithium-ion batteries, serves as a critical indicator for the accurate estimation and prediction of battery health. The DCIR of a battery is affected by the electrode structure. Despite its significance, the relationship between the electrode structure and the DCIR during charging and discharging remains unclear. Based on a pore network model of a lithium manganate cell, this work focuses on the cathode and quantifies the effects of cathode thickness (<span><math><mrow><mi>L</mi></mrow></math></span>), porosity (<span><math><mrow><mi>ε</mi></mrow></math></span>), connectivity (<span><math><mrow><mi>G</mi></mrow></math></span>), average particle size (<span><math><mrow><mi>d</mi></mrow></math></span>) and specific surface area (<span><math><mrow><mi>S</mi><mo>/</mo><mi>V</mi></mrow></math></span>) on DCIR. Combined with machine learning, this work identify that cathode thickness, porosity and average particle size the primary determinants of the DCIR, and the formulas for calculating charging and discharging DCIR are derived, <span><math><mrow><msub><mtext>DCIR</mtext><mtext>Charge</mtext></msub><mo>=</mo><mn>0.168</mn><msup><mrow><mi>L</mi><mi>d</mi></mrow><mn>4</mn></msup><mo>/</mo><msup><mi>ε</mi><mn>2.5</mn></msup></mrow></math></span> and <span><math><mrow><msub><mtext>DCIR</mtext><mtext>Discharge</mtext></msub><mo>=</mo><mn>0.072</mn><msup><mrow><mi>L</mi><mi>d</mi></mrow><mn>3</mn></msup><mo>/</mo><msup><mi>ε</mi><mn>2</mn></msup></mrow></math></span>. This work proposes a research framework for predicting DCIR from the electrode structure, which is applicable to most porous electrode batteries, providing a theoretical basis for calculating the DCIR and is of great significance for electrode design.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"628 \",\"pages\":\"Article 235891\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324018433\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018433","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

直流内阻(DCIR)是锂离子电池的基本特性,是准确估计和预测电池健康状况的关键指标。电池的直流内阻受电极结构的影响。尽管电极结构非常重要,但充电和放电过程中电极结构与 DCIR 之间的关系仍不清楚。本研究基于锰酸锂电池的孔隙网络模型,重点研究了阴极,并量化了阴极厚度(L)、孔隙率(ε)、连通性(G)、平均粒径(d)和比表面积(S/V)对直流电红外的影响。结合机器学习,这项工作确定了阴极厚度、孔隙率和平均粒径是 DCIR 的主要决定因素,并得出了充放电 DCIR 的计算公式:DCIRCharge=0.168Ld4/ε2.5 和 DCIRDischarge=0.072Ld3/ε2。这项工作提出了一个从电极结构预测直流电阻比值的研究框架,适用于大多数多孔电极电池,为计算直流电阻比值提供了理论依据,对电极设计具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uncovering the battery direct current internal resistance puzzle: A machine learning-driven pore network approach

Uncovering the battery direct current internal resistance puzzle: A machine learning-driven pore network approach
Direct current internal resistance (DCIR), as a fundamental characteristic of lithium-ion batteries, serves as a critical indicator for the accurate estimation and prediction of battery health. The DCIR of a battery is affected by the electrode structure. Despite its significance, the relationship between the electrode structure and the DCIR during charging and discharging remains unclear. Based on a pore network model of a lithium manganate cell, this work focuses on the cathode and quantifies the effects of cathode thickness (L), porosity (ε), connectivity (G), average particle size (d) and specific surface area (S/V) on DCIR. Combined with machine learning, this work identify that cathode thickness, porosity and average particle size the primary determinants of the DCIR, and the formulas for calculating charging and discharging DCIR are derived, DCIRCharge=0.168Ld4/ε2.5 and DCIRDischarge=0.072Ld3/ε2. This work proposes a research framework for predicting DCIR from the electrode structure, which is applicable to most porous electrode batteries, providing a theoretical basis for calculating the DCIR and is of great significance for electrode design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信