分数薛定谔-泊松系统的无限多负能量解

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Anbiao Zeng, Guangze Gu
{"title":"分数薛定谔-泊松系统的无限多负能量解","authors":"Anbiao Zeng,&nbsp;Guangze Gu","doi":"10.1016/j.aml.2024.109389","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the following fractional Schrödinger–Poisson system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mi>ϕ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>ϕ</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> is a fixed constant, <span><math><mi>f</mi></math></span> is continuous, sublinear at the origin and subcritical at infinity. Applying the Clark’s theorem and truncation method, we can obtain a sequence of negative energy solutions.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109389"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many negative energy solutions for fractional Schrödinger–Poisson systems\",\"authors\":\"Anbiao Zeng,&nbsp;Guangze Gu\",\"doi\":\"10.1016/j.aml.2024.109389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the following fractional Schrödinger–Poisson system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mi>ϕ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>ϕ</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> is a fixed constant, <span><math><mi>f</mi></math></span> is continuous, sublinear at the origin and subcritical at infinity. Applying the Clark’s theorem and truncation method, we can obtain a sequence of negative energy solutions.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"162 \",\"pages\":\"Article 109389\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924004099\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924004099","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑以下分数薛定谔-泊松系统 (-Δ)su+V(x)u+ju=f(u),inR3,(-Δ)sj=u2,inR3, 其中 s∈(12,1) 是一个固定常数,f 是连续的,在原点处是亚线性的,在无穷远处是亚临界的。应用克拉克定理和截断法,我们可以得到一系列负能量解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitely many negative energy solutions for fractional Schrödinger–Poisson systems
We consider the following fractional Schrödinger–Poisson system (Δ)su+V(x)u+ϕu=f(u),inR3,(Δ)sϕ=u2,inR3,where s(12,1) is a fixed constant, f is continuous, sublinear at the origin and subcritical at infinity. Applying the Clark’s theorem and truncation method, we can obtain a sequence of negative energy solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信