用于医学诊断因果推理的稳健贝叶斯因果估计

IF 3.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tathagata Basu , Matthias C.M. Troffaes
{"title":"用于医学诊断因果推理的稳健贝叶斯因果估计","authors":"Tathagata Basu ,&nbsp;Matthias C.M. Troffaes","doi":"10.1016/j.ijar.2024.109330","DOIUrl":null,"url":null,"abstract":"<div><div>Causal effect estimation is a critical task in statistical learning that aims to find the causal effect on subjects by identifying causal links between a number of predictor (or, explanatory) variables and the outcome of a treatment. In a regressional framework, we assign a treatment and outcome model to estimate the average causal effect. Additionally, for high dimensional regression problems, variable selection methods are also used to find a subset of predictor variables that maximises the predictive performance of the underlying model for better estimation of the causal effect. In this paper, we propose a different approach. We focus on the variable selection aspects of high dimensional causal estimation problem. We suggest a cautious Bayesian group LASSO (least absolute shrinkage and selection operator) framework for variable selection using prior sensitivity analysis. We argue that in some cases, abstaining from selecting (or, rejecting) a predictor is beneficial and we should gather more information to obtain a more decisive result. We also show that for problems with very limited information, expert elicited variable selection can give us a more stable causal effect estimation as it avoids overfitting. Lastly, we carry a comparative study with synthetic dataset and show the applicability of our method in real-life situations.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"177 ","pages":"Article 109330"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Bayesian causal estimation for causal inference in medical diagnosis\",\"authors\":\"Tathagata Basu ,&nbsp;Matthias C.M. Troffaes\",\"doi\":\"10.1016/j.ijar.2024.109330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Causal effect estimation is a critical task in statistical learning that aims to find the causal effect on subjects by identifying causal links between a number of predictor (or, explanatory) variables and the outcome of a treatment. In a regressional framework, we assign a treatment and outcome model to estimate the average causal effect. Additionally, for high dimensional regression problems, variable selection methods are also used to find a subset of predictor variables that maximises the predictive performance of the underlying model for better estimation of the causal effect. In this paper, we propose a different approach. We focus on the variable selection aspects of high dimensional causal estimation problem. We suggest a cautious Bayesian group LASSO (least absolute shrinkage and selection operator) framework for variable selection using prior sensitivity analysis. We argue that in some cases, abstaining from selecting (or, rejecting) a predictor is beneficial and we should gather more information to obtain a more decisive result. We also show that for problems with very limited information, expert elicited variable selection can give us a more stable causal effect estimation as it avoids overfitting. Lastly, we carry a comparative study with synthetic dataset and show the applicability of our method in real-life situations.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"177 \",\"pages\":\"Article 109330\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24002172\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24002172","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

因果效应估计是统计学习中的一项重要任务,其目的是通过确定若干预测(或解释)变量与治疗结果之间的因果联系,找到对受试者的因果效应。在回归框架中,我们指定一个治疗和结果模型来估计平均因果效应。此外,对于高维回归问题,也会使用变量选择方法来找到一个预测变量子集,使基础模型的预测性能最大化,从而更好地估计因果效应。在本文中,我们提出了一种不同的方法。我们将重点放在高维因果估计问题的变量选择方面。我们提出了一个谨慎的贝叶斯组 LASSO(最小绝对收缩和选择算子)框架,利用先验敏感性分析进行变量选择。我们认为,在某些情况下,放弃选择(或拒绝)一个预测因子是有益的,我们应该收集更多信息,以获得更果断的结果。我们还表明,对于信息非常有限的问题,专家诱导的变量选择可以为我们提供更稳定的因果效应估计,因为它可以避免过度拟合。最后,我们利用合成数据集进行了对比研究,并展示了我们的方法在现实生活中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Bayesian causal estimation for causal inference in medical diagnosis
Causal effect estimation is a critical task in statistical learning that aims to find the causal effect on subjects by identifying causal links between a number of predictor (or, explanatory) variables and the outcome of a treatment. In a regressional framework, we assign a treatment and outcome model to estimate the average causal effect. Additionally, for high dimensional regression problems, variable selection methods are also used to find a subset of predictor variables that maximises the predictive performance of the underlying model for better estimation of the causal effect. In this paper, we propose a different approach. We focus on the variable selection aspects of high dimensional causal estimation problem. We suggest a cautious Bayesian group LASSO (least absolute shrinkage and selection operator) framework for variable selection using prior sensitivity analysis. We argue that in some cases, abstaining from selecting (or, rejecting) a predictor is beneficial and we should gather more information to obtain a more decisive result. We also show that for problems with very limited information, expert elicited variable selection can give us a more stable causal effect estimation as it avoids overfitting. Lastly, we carry a comparative study with synthetic dataset and show the applicability of our method in real-life situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信