Yang LI , Bowen WU , Zhipeng YU , He YANG , Lijun JIN , Haoquan HU
{"title":"NMH 煤和脱碱木质素共热解产生的挥发性成分分布","authors":"Yang LI , Bowen WU , Zhipeng YU , He YANG , Lijun JIN , Haoquan HU","doi":"10.1016/S1872-5813(24)60471-8","DOIUrl":null,"url":null,"abstract":"<div><div>Experimental studies on co-pyrolysis of coal and lignin are carried out on a fixed-bed reactor to investigate composition and transformation of the co-pyrolysis products. The results show that co-pyrolysis reduces yield of char and promotes yield of gas, the maximum pyrolysis gas yield increases by 33.1%. Co-pyrolysis has a significant promotion effect on generation of CH<sub>4</sub> and CO. The interaction between the pyrolyzed volatile fractions of coal and lignin shows the most pronounced interaction at a coal to lignin mixing ratio of 1:1, and the pyrolysis tar yield shows a positive synergistic effect. Guaiacols are converted to monophenols and bisphenols during the co-pyrolysis process. Content of monophenols and bisphenols increase by 2.9% and 9.8%, respectively, while content of guaiacols decreases by 5.1% compared with the theoretically calculated values. The breakage of carbonyl and carboxyl groups, and the interaction with volatile components are enhanced, which inhibits formation of ethers, aldehydes and acids, and promotes generation of phenols, release of oxygenated gases and stabilization of pyrolysis tar. The introduction of lignin into coal pyrolysis also significantly promotes the upgrading of tar in which light components is nearly 90%.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 11","pages":"Pages 1594-1603"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of volatile composition from co-pyrolysis of NMH coal and dealkaline lignin\",\"authors\":\"Yang LI , Bowen WU , Zhipeng YU , He YANG , Lijun JIN , Haoquan HU\",\"doi\":\"10.1016/S1872-5813(24)60471-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Experimental studies on co-pyrolysis of coal and lignin are carried out on a fixed-bed reactor to investigate composition and transformation of the co-pyrolysis products. The results show that co-pyrolysis reduces yield of char and promotes yield of gas, the maximum pyrolysis gas yield increases by 33.1%. Co-pyrolysis has a significant promotion effect on generation of CH<sub>4</sub> and CO. The interaction between the pyrolyzed volatile fractions of coal and lignin shows the most pronounced interaction at a coal to lignin mixing ratio of 1:1, and the pyrolysis tar yield shows a positive synergistic effect. Guaiacols are converted to monophenols and bisphenols during the co-pyrolysis process. Content of monophenols and bisphenols increase by 2.9% and 9.8%, respectively, while content of guaiacols decreases by 5.1% compared with the theoretically calculated values. The breakage of carbonyl and carboxyl groups, and the interaction with volatile components are enhanced, which inhibits formation of ethers, aldehydes and acids, and promotes generation of phenols, release of oxygenated gases and stabilization of pyrolysis tar. The introduction of lignin into coal pyrolysis also significantly promotes the upgrading of tar in which light components is nearly 90%.</div></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"52 11\",\"pages\":\"Pages 1594-1603\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581324604718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Distribution of volatile composition from co-pyrolysis of NMH coal and dealkaline lignin
Experimental studies on co-pyrolysis of coal and lignin are carried out on a fixed-bed reactor to investigate composition and transformation of the co-pyrolysis products. The results show that co-pyrolysis reduces yield of char and promotes yield of gas, the maximum pyrolysis gas yield increases by 33.1%. Co-pyrolysis has a significant promotion effect on generation of CH4 and CO. The interaction between the pyrolyzed volatile fractions of coal and lignin shows the most pronounced interaction at a coal to lignin mixing ratio of 1:1, and the pyrolysis tar yield shows a positive synergistic effect. Guaiacols are converted to monophenols and bisphenols during the co-pyrolysis process. Content of monophenols and bisphenols increase by 2.9% and 9.8%, respectively, while content of guaiacols decreases by 5.1% compared with the theoretically calculated values. The breakage of carbonyl and carboxyl groups, and the interaction with volatile components are enhanced, which inhibits formation of ethers, aldehydes and acids, and promotes generation of phenols, release of oxygenated gases and stabilization of pyrolysis tar. The introduction of lignin into coal pyrolysis also significantly promotes the upgrading of tar in which light components is nearly 90%.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.