Hyowon Park , Hyun Ji Eo , Chul-Woo Kim , Jane E. Stewart , Uk Lee , Jinwook Lee
{"title":"冷藏耐寒猕猴桃对苯丙酮途径的不同调控是冷藏诱发坏死性果皮病变的重要原因","authors":"Hyowon Park , Hyun Ji Eo , Chul-Woo Kim , Jane E. Stewart , Uk Lee , Jinwook Lee","doi":"10.1016/j.postharvbio.2024.113337","DOIUrl":null,"url":null,"abstract":"<div><div>Fruit of hardy kiwifruit cultivars respond differently to chilling stress during cold storage. Therefore, this study aimed to evaluate the differential responses of fruit quality attributes, physiological disorders, and untargeted and targeted metabolites of two contrasting hardy kiwifruit cultivars, ‘Greenheart’ and ‘Daebo’ during cold storage. During cold storage, the ‘Daebo’ cultivar exhibited more severe symptoms of chilling injury, such as peel browning and peel pitting, compared to the ‘Greenheart’ cultivar. Untargeted and targeted metabolic analyses indicated that syringic acid, total phenolic compounds, total flavonoids, catechin, rutin, ferulic acid, quinic acid, citramalic acid, and isoquercitrin levels were higher in ‘Greenheart’ compared to ‘Daebo’ during cold storage. However, citric, isocitric, and threonic acids, gamma-aminobutyric acid, cysteine, β-alanine, titratable acidity, epicatechin, and proline were high in the ‘Daebo’ cultivar. Peel browning and pitting were positively correlated with soluble carbohydrates, organic acids, and amino acids but negatively correlated with individual phenolic compounds in ‘Daebo’ cultivar. The tricarboxylic acid cycle, glyoxylate and dicarboxylate metabolism, arginine and proline metabolism, biosynthesis of unsaturated fatty acids, arginine biosynthesis, and alanine, aspartate, and glutamate metabolism were upregulated in the ‘Daebo’ cultivar, whereas the phenylpropanoid pathway was upregulated in the ‘Greenheart’ cultivar. Our study showed that differentially upregulated pathways could lead to the contrasting development of necrotic peel disorders in these two hardy kiwifruit cultivars during cold storage. Our results suggest that the distinctive responses of metabolic analyses to chilling stress can contribute to susceptibility in chilling-induced necrotic peel disorders in cold-stored fruit of the ‘Daebo’ hardy kiwifruit cultivar.</div></div>","PeriodicalId":20328,"journal":{"name":"Postharvest Biology and Technology","volume":"221 ","pages":"Article 113337"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential regulation of the phenylpropanoid pathway highly contributes to the susceptibility of chilling-induced necrotic peel disorders in cold-stored hardy kiwifruit\",\"authors\":\"Hyowon Park , Hyun Ji Eo , Chul-Woo Kim , Jane E. Stewart , Uk Lee , Jinwook Lee\",\"doi\":\"10.1016/j.postharvbio.2024.113337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fruit of hardy kiwifruit cultivars respond differently to chilling stress during cold storage. Therefore, this study aimed to evaluate the differential responses of fruit quality attributes, physiological disorders, and untargeted and targeted metabolites of two contrasting hardy kiwifruit cultivars, ‘Greenheart’ and ‘Daebo’ during cold storage. During cold storage, the ‘Daebo’ cultivar exhibited more severe symptoms of chilling injury, such as peel browning and peel pitting, compared to the ‘Greenheart’ cultivar. Untargeted and targeted metabolic analyses indicated that syringic acid, total phenolic compounds, total flavonoids, catechin, rutin, ferulic acid, quinic acid, citramalic acid, and isoquercitrin levels were higher in ‘Greenheart’ compared to ‘Daebo’ during cold storage. However, citric, isocitric, and threonic acids, gamma-aminobutyric acid, cysteine, β-alanine, titratable acidity, epicatechin, and proline were high in the ‘Daebo’ cultivar. Peel browning and pitting were positively correlated with soluble carbohydrates, organic acids, and amino acids but negatively correlated with individual phenolic compounds in ‘Daebo’ cultivar. The tricarboxylic acid cycle, glyoxylate and dicarboxylate metabolism, arginine and proline metabolism, biosynthesis of unsaturated fatty acids, arginine biosynthesis, and alanine, aspartate, and glutamate metabolism were upregulated in the ‘Daebo’ cultivar, whereas the phenylpropanoid pathway was upregulated in the ‘Greenheart’ cultivar. Our study showed that differentially upregulated pathways could lead to the contrasting development of necrotic peel disorders in these two hardy kiwifruit cultivars during cold storage. Our results suggest that the distinctive responses of metabolic analyses to chilling stress can contribute to susceptibility in chilling-induced necrotic peel disorders in cold-stored fruit of the ‘Daebo’ hardy kiwifruit cultivar.</div></div>\",\"PeriodicalId\":20328,\"journal\":{\"name\":\"Postharvest Biology and Technology\",\"volume\":\"221 \",\"pages\":\"Article 113337\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Postharvest Biology and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925521424005829\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postharvest Biology and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925521424005829","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Differential regulation of the phenylpropanoid pathway highly contributes to the susceptibility of chilling-induced necrotic peel disorders in cold-stored hardy kiwifruit
Fruit of hardy kiwifruit cultivars respond differently to chilling stress during cold storage. Therefore, this study aimed to evaluate the differential responses of fruit quality attributes, physiological disorders, and untargeted and targeted metabolites of two contrasting hardy kiwifruit cultivars, ‘Greenheart’ and ‘Daebo’ during cold storage. During cold storage, the ‘Daebo’ cultivar exhibited more severe symptoms of chilling injury, such as peel browning and peel pitting, compared to the ‘Greenheart’ cultivar. Untargeted and targeted metabolic analyses indicated that syringic acid, total phenolic compounds, total flavonoids, catechin, rutin, ferulic acid, quinic acid, citramalic acid, and isoquercitrin levels were higher in ‘Greenheart’ compared to ‘Daebo’ during cold storage. However, citric, isocitric, and threonic acids, gamma-aminobutyric acid, cysteine, β-alanine, titratable acidity, epicatechin, and proline were high in the ‘Daebo’ cultivar. Peel browning and pitting were positively correlated with soluble carbohydrates, organic acids, and amino acids but negatively correlated with individual phenolic compounds in ‘Daebo’ cultivar. The tricarboxylic acid cycle, glyoxylate and dicarboxylate metabolism, arginine and proline metabolism, biosynthesis of unsaturated fatty acids, arginine biosynthesis, and alanine, aspartate, and glutamate metabolism were upregulated in the ‘Daebo’ cultivar, whereas the phenylpropanoid pathway was upregulated in the ‘Greenheart’ cultivar. Our study showed that differentially upregulated pathways could lead to the contrasting development of necrotic peel disorders in these two hardy kiwifruit cultivars during cold storage. Our results suggest that the distinctive responses of metabolic analyses to chilling stress can contribute to susceptibility in chilling-induced necrotic peel disorders in cold-stored fruit of the ‘Daebo’ hardy kiwifruit cultivar.
期刊介绍:
The journal is devoted exclusively to the publication of original papers, review articles and frontiers articles on biological and technological postharvest research. This includes the areas of postharvest storage, treatments and underpinning mechanisms, quality evaluation, packaging, handling and distribution of fresh horticultural crops including fruit, vegetables, flowers and nuts, but excluding grains, seeds and forages.
Papers reporting novel insights from fundamental and interdisciplinary research will be particularly encouraged. These disciplines include systems biology, bioinformatics, entomology, plant physiology, plant pathology, (bio)chemistry, engineering, modelling, and technologies for nondestructive testing.
Manuscripts on fresh food crops that will be further processed after postharvest storage, or on food processes beyond refrigeration, packaging and minimal processing will not be considered.