色彩恒定性的不确定性估计

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Marco Buzzelli , Simone Bianco
{"title":"色彩恒定性的不确定性估计","authors":"Marco Buzzelli ,&nbsp;Simone Bianco","doi":"10.1016/j.patcog.2024.111175","DOIUrl":null,"url":null,"abstract":"<div><div>Computational color constancy is an under-determined problem. As such, a key objective is to assign a level of uncertainty to the output illuminant estimations, which can significantly impact the reliability of the corrected images for downstream computer vision tasks. In this paper we present a formalization of uncertainty estimation in color constancy, and we define three forms of uncertainty that require at most one inference run to be estimated. The defined uncertainty estimators are applied to five different categories of color constancy algorithms. The experimental results on two standard datasets show a strong correlation between the estimated uncertainty and the illuminant estimation error. Furthermore, we show how color constancy algorithms can be cascaded leveraging the estimated uncertainty to provide more accurate illuminant estimates.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"160 ","pages":"Article 111175"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty estimation in color constancy\",\"authors\":\"Marco Buzzelli ,&nbsp;Simone Bianco\",\"doi\":\"10.1016/j.patcog.2024.111175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Computational color constancy is an under-determined problem. As such, a key objective is to assign a level of uncertainty to the output illuminant estimations, which can significantly impact the reliability of the corrected images for downstream computer vision tasks. In this paper we present a formalization of uncertainty estimation in color constancy, and we define three forms of uncertainty that require at most one inference run to be estimated. The defined uncertainty estimators are applied to five different categories of color constancy algorithms. The experimental results on two standard datasets show a strong correlation between the estimated uncertainty and the illuminant estimation error. Furthermore, we show how color constancy algorithms can be cascaded leveraging the estimated uncertainty to provide more accurate illuminant estimates.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"160 \",\"pages\":\"Article 111175\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324009269\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324009269","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

计算色彩恒定是一个不确定的问题。因此,一个关键目标是为输出光照度估计值分配一定程度的不确定性,这会极大地影响下游计算机视觉任务中校正图像的可靠性。在本文中,我们对色彩恒定性中的不确定性估计进行了形式化,并定义了三种形式的不确定性,这些不确定性最多需要一次推理运行来估计。定义的不确定性估计器被应用于五种不同类别的色彩恒定算法。在两个标准数据集上的实验结果表明,估计的不确定性与照度估计误差之间存在很强的相关性。此外,我们还展示了如何利用估计的不确定性级联色彩恒定算法,以提供更精确的光照度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty estimation in color constancy
Computational color constancy is an under-determined problem. As such, a key objective is to assign a level of uncertainty to the output illuminant estimations, which can significantly impact the reliability of the corrected images for downstream computer vision tasks. In this paper we present a formalization of uncertainty estimation in color constancy, and we define three forms of uncertainty that require at most one inference run to be estimated. The defined uncertainty estimators are applied to five different categories of color constancy algorithms. The experimental results on two standard datasets show a strong correlation between the estimated uncertainty and the illuminant estimation error. Furthermore, we show how color constancy algorithms can be cascaded leveraging the estimated uncertainty to provide more accurate illuminant estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信