利用泡沫镍和 MXene 纳米增强 PCM 复合材料的凝固效应提高热能储存器的热性能

IF 5.1 3区 工程技术 Q2 ENERGY & FUELS
Utkarsh Srivastava, Rashmi Rekha Sahoo
{"title":"利用泡沫镍和 MXene 纳米增强 PCM 复合材料的凝固效应提高热能储存器的热性能","authors":"Utkarsh Srivastava,&nbsp;Rashmi Rekha Sahoo","doi":"10.1016/j.tsep.2024.103068","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a numerical investigation into the solidification behavior of phase change material (PCM) in duplex and triplex-tube latent heat thermal energy storage (LHTES) systems enhanced with nickel foam and MXene nanoparticles. The study aims to investigate how nickel foam integration enhances heat transfer during PCM solidification, aiming for faster, more uniform solidification, and to analyse energy and exergy efficiency for optimizing thermal energy storage systems. The study also assesses the impact of nickel foam on enhancing PCM thermal conductivity, improving solidification rates, and overall thermal management. Focusing on a nickel foam/PCM/MXene (5 % v/v.) composite, the study explores the effects of solidification characteristics, as well as the Stefan and Fourier numbers, in both duplex tube thermal energy storage (DuT-TES) and triplex tube thermal energy storage (TrT-TES) systems. It provides detailed insights into the thermal performance of these systems by evaluating key factors such as liquid fraction, solidification temperature profiles, exergy destruction, exergetic efficiency, system efficiency, and discharged energy.</div><div>The findings reveal that systems incorporating nickel foam/PCM-MXene composites significantly outperformed those using nickel foam/PCM and pure PCM alone, achieving notably faster solidification. Specifically, the nickel foam/PCM composite demonstrated higher discharge exergy than pure cetyl alcohol PCM. The TrT-TES system with the nickel foam/PCM composite solidified 48.40% faster than the DuT-TES system. Additionally, the discharge energy of the TrT-TES system with nickel foam/PCM and nickel foam/PCM/MXene composites was 2.26 % and 3.65 % greater, respectively, than that of the DuT-TES system. At 90 s, the DuT-TES with nickel foam/PCM/MXene showed a 2.91 % improvement in system efficiency. Overall, the TrT-TES system using the nickel foam/PCM/MXene composite exhibited a 48.39 % faster solidification rate than the DuT-TES system. Thus, this study highlights the superior potential of the TrT-TES system with nickel foam/PCM/MXene composite for enhancing latent heat thermal energy storage, outperforming the DuT-TES system in terms of solidification speed, discharge energy, and efficiency.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"56 ","pages":"Article 103068"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal performance enhancement with solidification effect of nickel foam and MXene nanoenhanced PCM composite based thermal energy storages\",\"authors\":\"Utkarsh Srivastava,&nbsp;Rashmi Rekha Sahoo\",\"doi\":\"10.1016/j.tsep.2024.103068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a numerical investigation into the solidification behavior of phase change material (PCM) in duplex and triplex-tube latent heat thermal energy storage (LHTES) systems enhanced with nickel foam and MXene nanoparticles. The study aims to investigate how nickel foam integration enhances heat transfer during PCM solidification, aiming for faster, more uniform solidification, and to analyse energy and exergy efficiency for optimizing thermal energy storage systems. The study also assesses the impact of nickel foam on enhancing PCM thermal conductivity, improving solidification rates, and overall thermal management. Focusing on a nickel foam/PCM/MXene (5 % v/v.) composite, the study explores the effects of solidification characteristics, as well as the Stefan and Fourier numbers, in both duplex tube thermal energy storage (DuT-TES) and triplex tube thermal energy storage (TrT-TES) systems. It provides detailed insights into the thermal performance of these systems by evaluating key factors such as liquid fraction, solidification temperature profiles, exergy destruction, exergetic efficiency, system efficiency, and discharged energy.</div><div>The findings reveal that systems incorporating nickel foam/PCM-MXene composites significantly outperformed those using nickel foam/PCM and pure PCM alone, achieving notably faster solidification. Specifically, the nickel foam/PCM composite demonstrated higher discharge exergy than pure cetyl alcohol PCM. The TrT-TES system with the nickel foam/PCM composite solidified 48.40% faster than the DuT-TES system. Additionally, the discharge energy of the TrT-TES system with nickel foam/PCM and nickel foam/PCM/MXene composites was 2.26 % and 3.65 % greater, respectively, than that of the DuT-TES system. At 90 s, the DuT-TES with nickel foam/PCM/MXene showed a 2.91 % improvement in system efficiency. Overall, the TrT-TES system using the nickel foam/PCM/MXene composite exhibited a 48.39 % faster solidification rate than the DuT-TES system. Thus, this study highlights the superior potential of the TrT-TES system with nickel foam/PCM/MXene composite for enhancing latent heat thermal energy storage, outperforming the DuT-TES system in terms of solidification speed, discharge energy, and efficiency.</div></div>\",\"PeriodicalId\":23062,\"journal\":{\"name\":\"Thermal Science and Engineering Progress\",\"volume\":\"56 \",\"pages\":\"Article 103068\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science and Engineering Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451904924006863\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924006863","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文对使用泡沫镍和 MXene 纳米粒子增强的双联管和三联管潜热热能存储(LHTES)系统中相变材料(PCM)的凝固行为进行了数值研究。该研究旨在探讨泡沫镍如何在 PCM 固化过程中增强传热,从而实现更快、更均匀的固化,并分析能量和放能效率,以优化热能存储系统。研究还评估了泡沫镍对增强 PCM 热传导性、提高凝固速率和整体热管理的影响。该研究以泡沫镍/PCM/MXene(5% v/v.)复合材料为重点,探讨了凝固特性以及斯特凡数和傅里叶数在双联管热能储存(DuT-TES)和三联管热能储存(TrT-TES)系统中的影响。研究结果表明,采用泡沫镍/PCM-MXene 复合材料的系统明显优于单独使用泡沫镍/PCM 和纯 PCM 的系统,凝固速度明显更快。具体来说,泡沫镍/PCM 复合材料比纯鲸蜡醇 PCM 显示出更高的放电能。使用泡沫镍/PCM 复合材料的 TrT-TES 系统的凝固速度比 DuT-TES 系统快 48.40%。此外,带有泡沫镍/PCM 和泡沫镍/PCM/MXene 复合材料的 TrT-TES 系统的放电能量分别比 DuT-TES 系统高 2.26% 和 3.65%。在 90 秒时,使用泡沫镍/PCM/MXene 的 DuT-TES 系统效率提高了 2.91%。总体而言,使用泡沫镍/PCM/MXene 复合材料的 TrT-TES 系统的凝固速度比 DuT-TES 系统快 48.39%。因此,本研究强调了使用泡沫镍/PCM/MXene 复合材料的 TrT-TES 系统在提高潜热热能存储方面的卓越潜力,在凝固速度、放电能量和效率方面均优于 DuT-TES 系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal performance enhancement with solidification effect of nickel foam and MXene nanoenhanced PCM composite based thermal energy storages

Thermal performance enhancement with solidification effect of nickel foam and MXene nanoenhanced PCM composite based thermal energy storages
This paper presents a numerical investigation into the solidification behavior of phase change material (PCM) in duplex and triplex-tube latent heat thermal energy storage (LHTES) systems enhanced with nickel foam and MXene nanoparticles. The study aims to investigate how nickel foam integration enhances heat transfer during PCM solidification, aiming for faster, more uniform solidification, and to analyse energy and exergy efficiency for optimizing thermal energy storage systems. The study also assesses the impact of nickel foam on enhancing PCM thermal conductivity, improving solidification rates, and overall thermal management. Focusing on a nickel foam/PCM/MXene (5 % v/v.) composite, the study explores the effects of solidification characteristics, as well as the Stefan and Fourier numbers, in both duplex tube thermal energy storage (DuT-TES) and triplex tube thermal energy storage (TrT-TES) systems. It provides detailed insights into the thermal performance of these systems by evaluating key factors such as liquid fraction, solidification temperature profiles, exergy destruction, exergetic efficiency, system efficiency, and discharged energy.
The findings reveal that systems incorporating nickel foam/PCM-MXene composites significantly outperformed those using nickel foam/PCM and pure PCM alone, achieving notably faster solidification. Specifically, the nickel foam/PCM composite demonstrated higher discharge exergy than pure cetyl alcohol PCM. The TrT-TES system with the nickel foam/PCM composite solidified 48.40% faster than the DuT-TES system. Additionally, the discharge energy of the TrT-TES system with nickel foam/PCM and nickel foam/PCM/MXene composites was 2.26 % and 3.65 % greater, respectively, than that of the DuT-TES system. At 90 s, the DuT-TES with nickel foam/PCM/MXene showed a 2.91 % improvement in system efficiency. Overall, the TrT-TES system using the nickel foam/PCM/MXene composite exhibited a 48.39 % faster solidification rate than the DuT-TES system. Thus, this study highlights the superior potential of the TrT-TES system with nickel foam/PCM/MXene composite for enhancing latent heat thermal energy storage, outperforming the DuT-TES system in terms of solidification speed, discharge energy, and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thermal Science and Engineering Progress
Thermal Science and Engineering Progress Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
7.20
自引率
10.40%
发文量
327
审稿时长
41 days
期刊介绍: Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信