二维拉普拉斯-诺伊曼问题 MAS 解的收敛、发散和固有振荡

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Georgios D. Kolezas, George Fikioris, John A. Roumeliotis
{"title":"二维拉普拉斯-诺伊曼问题 MAS 解的收敛、发散和固有振荡","authors":"Georgios D. Kolezas,&nbsp;George Fikioris,&nbsp;John A. Roumeliotis","doi":"10.1016/j.apnum.2024.11.012","DOIUrl":null,"url":null,"abstract":"<div><div>The method of auxiliary sources (MAS), also known as the method of fundamental solutions (MFS), is a well-known computational method for the solution of boundary-value problems. The final solution (“MAS solution”) is obtained once we have found the amplitudes of <em>N</em> auxiliary “MAS sources.” Past studies have shown that it is possible for the MAS solution to converge to the true solution even when the <em>N</em> auxiliary sources diverge and oscillate. Here, we extend the past studies by demonstrating this possibility within the context of Laplace's equation with Neumann boundary conditions. The correct solution can thus be obtained from sources that, when <em>N</em> is large, must be considered unphysical. We carefully explain the underlying reasons for the unphysical results, distinguish from other difficulties that might concurrently arise, and point to significant differences with time-dependent problems studied in the past.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"209 ","pages":"Pages 171-186"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence, divergence, and inherent oscillations in MAS solutions of 2D Laplace-Neumann problems\",\"authors\":\"Georgios D. Kolezas,&nbsp;George Fikioris,&nbsp;John A. Roumeliotis\",\"doi\":\"10.1016/j.apnum.2024.11.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The method of auxiliary sources (MAS), also known as the method of fundamental solutions (MFS), is a well-known computational method for the solution of boundary-value problems. The final solution (“MAS solution”) is obtained once we have found the amplitudes of <em>N</em> auxiliary “MAS sources.” Past studies have shown that it is possible for the MAS solution to converge to the true solution even when the <em>N</em> auxiliary sources diverge and oscillate. Here, we extend the past studies by demonstrating this possibility within the context of Laplace's equation with Neumann boundary conditions. The correct solution can thus be obtained from sources that, when <em>N</em> is large, must be considered unphysical. We carefully explain the underlying reasons for the unphysical results, distinguish from other difficulties that might concurrently arise, and point to significant differences with time-dependent problems studied in the past.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"209 \",\"pages\":\"Pages 171-186\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424003209\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424003209","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

辅助源法(MAS),又称基本解法(MFS),是一种著名的边界值问题求解计算方法。当我们找到 N 个辅助 "MAS 源 "的振幅后,就得到了最终解("MAS 解")。过去的研究表明,即使 N 个辅助源发散和振荡,MAS 解也有可能收敛到真解。在这里,我们扩展了过去的研究,在具有新曼边界条件的拉普拉斯方程中证明了这种可能性。因此,可以从 N 较大时必须被视为非物理的源中获得正确的解。我们仔细解释了非物理结果的根本原因,区分了可能同时出现的其他困难,并指出了与过去研究的时间相关问题的显著区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence, divergence, and inherent oscillations in MAS solutions of 2D Laplace-Neumann problems
The method of auxiliary sources (MAS), also known as the method of fundamental solutions (MFS), is a well-known computational method for the solution of boundary-value problems. The final solution (“MAS solution”) is obtained once we have found the amplitudes of N auxiliary “MAS sources.” Past studies have shown that it is possible for the MAS solution to converge to the true solution even when the N auxiliary sources diverge and oscillate. Here, we extend the past studies by demonstrating this possibility within the context of Laplace's equation with Neumann boundary conditions. The correct solution can thus be obtained from sources that, when N is large, must be considered unphysical. We carefully explain the underlying reasons for the unphysical results, distinguish from other difficulties that might concurrently arise, and point to significant differences with time-dependent problems studied in the past.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信