发达管流中多分散颗粒的三电充电

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chris Lawn
{"title":"发达管流中多分散颗粒的三电充电","authors":"Chris Lawn","doi":"10.1016/j.elstat.2024.103993","DOIUrl":null,"url":null,"abstract":"<div><div>A framework has been developed for computing the tribocharging of particles while they are being conveyed pneumatically through high-velocity circular pipes. Fully-developed flow and particle conditions are considered. With four compositions of particle ranging from nanometre sizes to 100 μm, the radial electrostatic field induced by the space charge of all the particles was approximated, and then updated with the different radial distributions. Simple models for the response of the particles to turbulence, for the radial drift induced by the electrostatic field, for inter-particle collisions, and for the asymptotic charging at the wall were developed. For particle numbers totalling 3x10<sup>9</sup>/m<sup>3</sup>, it was shown that collisions can be ignored. Large differences in the radial number density distributions for different particle sizes were found, from uniformity for those under about 5 μm, to heavy concentration at the wall for the larger ones.</div></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"133 ","pages":"Article 103993"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triboelectric charging of polydisperse particles in a developed pipe flow\",\"authors\":\"Chris Lawn\",\"doi\":\"10.1016/j.elstat.2024.103993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A framework has been developed for computing the tribocharging of particles while they are being conveyed pneumatically through high-velocity circular pipes. Fully-developed flow and particle conditions are considered. With four compositions of particle ranging from nanometre sizes to 100 μm, the radial electrostatic field induced by the space charge of all the particles was approximated, and then updated with the different radial distributions. Simple models for the response of the particles to turbulence, for the radial drift induced by the electrostatic field, for inter-particle collisions, and for the asymptotic charging at the wall were developed. For particle numbers totalling 3x10<sup>9</sup>/m<sup>3</sup>, it was shown that collisions can be ignored. Large differences in the radial number density distributions for different particle sizes were found, from uniformity for those under about 5 μm, to heavy concentration at the wall for the larger ones.</div></div>\",\"PeriodicalId\":54842,\"journal\":{\"name\":\"Journal of Electrostatics\",\"volume\":\"133 \",\"pages\":\"Article 103993\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrostatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304388624001001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388624001001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一个框架,用于计算颗粒在通过高速圆形管道进行气力输送时的三次充电。考虑了完全成熟的流动和颗粒条件。利用从纳米到 100 μm 的四种颗粒组成,对所有颗粒的空间电荷引起的径向静电场进行了近似,然后根据不同的径向分布进行了更新。建立了粒子对湍流的响应、静电场引起的径向漂移、粒子间碰撞和壁面渐近充电的简单模型。对于粒子总数为 3x109/m3 的粒子,可以忽略碰撞。研究发现,不同大小颗粒的径向数量密度分布存在很大差异,小于 5 μm 的颗粒分布均匀,而大颗粒则在壁面处高度集中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Triboelectric charging of polydisperse particles in a developed pipe flow

Triboelectric charging of polydisperse particles in a developed pipe flow
A framework has been developed for computing the tribocharging of particles while they are being conveyed pneumatically through high-velocity circular pipes. Fully-developed flow and particle conditions are considered. With four compositions of particle ranging from nanometre sizes to 100 μm, the radial electrostatic field induced by the space charge of all the particles was approximated, and then updated with the different radial distributions. Simple models for the response of the particles to turbulence, for the radial drift induced by the electrostatic field, for inter-particle collisions, and for the asymptotic charging at the wall were developed. For particle numbers totalling 3x109/m3, it was shown that collisions can be ignored. Large differences in the radial number density distributions for different particle sizes were found, from uniformity for those under about 5 μm, to heavy concentration at the wall for the larger ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrostatics
Journal of Electrostatics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
11.10%
发文量
81
审稿时长
49 days
期刊介绍: The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas: Electrostatic charge separation processes. Electrostatic manipulation of particles, droplets, and biological cells. Electrostatically driven or controlled fluid flow. Electrostatics in the gas phase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信