{"title":"通过锌合金化和镍基底集成,在多次回流焊循环下提高 TLP 焊接铜/锰-3.5Ag/铜微凸块的微结构稳定性并增强其机械性能","authors":"Yin-Ku Lee, Yun-Chen Chan, Zih-Yu Wu, Su-Yueh Tsai, Shou-Yi Chang, Jenq-Gong Duh","doi":"10.1016/j.vacuum.2024.113855","DOIUrl":null,"url":null,"abstract":"<div><div>The transient liquid phase (TLP) bonding process is effective for constructing stacked structures in advanced packaging, as it allows for multiple reflow cycles without remelting. However, the various reflows can cause phase transformations, leading to internal stress-induced voids. Thus, the stability of IMC phases is particularly challenged in 3D stacking structures. Common configurations include Cu/Sn/Cu and Cu/Ni/Sn/Cu. Although Ni improves the stability of the Cu<sub>6</sub>Sn<sub>5</sub> phase, phase transformation to Cu<sub>3</sub>Sn can still occur, compromising reliability. This study investigates microstructure stability by doping Zn into the Cu/Sn-3.5Ag/Ni system across five reflow cycles. Results demonstrate that Cu-15Zn/Sn-3.5Ag/Ni microbumps reduce void formation and ensuring the phase stability of the (Cu,Ni)<sub>6</sub>(Sn,Zn)<sub>5</sub> to maintain the microstructure stability. The Zn addition inhibits the Cu<sub>3</sub>Sn layer, while optimizing grain size and orientation of (Cu,Ni)<sub>6</sub>(Sn,Zn)<sub>5</sub>. (Cu,Ni)<sub>6</sub>(Sn,Zn)<sub>5</sub> also exhibits increased hardness and reduced modulus (E<sub>r</sub>). These findings provide critical insights for designing sub-10-μm scale TLP-bonded microbumps in advanced packaging.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"232 ","pages":"Article 113855"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural stability enhancement and mechanical reinforcement of TLP-bonded Cu/Sn-3.5Ag/Cu microbumps under multiple reflow cycles through Zn Alloying and Ni substrate integration\",\"authors\":\"Yin-Ku Lee, Yun-Chen Chan, Zih-Yu Wu, Su-Yueh Tsai, Shou-Yi Chang, Jenq-Gong Duh\",\"doi\":\"10.1016/j.vacuum.2024.113855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The transient liquid phase (TLP) bonding process is effective for constructing stacked structures in advanced packaging, as it allows for multiple reflow cycles without remelting. However, the various reflows can cause phase transformations, leading to internal stress-induced voids. Thus, the stability of IMC phases is particularly challenged in 3D stacking structures. Common configurations include Cu/Sn/Cu and Cu/Ni/Sn/Cu. Although Ni improves the stability of the Cu<sub>6</sub>Sn<sub>5</sub> phase, phase transformation to Cu<sub>3</sub>Sn can still occur, compromising reliability. This study investigates microstructure stability by doping Zn into the Cu/Sn-3.5Ag/Ni system across five reflow cycles. Results demonstrate that Cu-15Zn/Sn-3.5Ag/Ni microbumps reduce void formation and ensuring the phase stability of the (Cu,Ni)<sub>6</sub>(Sn,Zn)<sub>5</sub> to maintain the microstructure stability. The Zn addition inhibits the Cu<sub>3</sub>Sn layer, while optimizing grain size and orientation of (Cu,Ni)<sub>6</sub>(Sn,Zn)<sub>5</sub>. (Cu,Ni)<sub>6</sub>(Sn,Zn)<sub>5</sub> also exhibits increased hardness and reduced modulus (E<sub>r</sub>). These findings provide critical insights for designing sub-10-μm scale TLP-bonded microbumps in advanced packaging.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"232 \",\"pages\":\"Article 113855\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X24009011\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24009011","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructural stability enhancement and mechanical reinforcement of TLP-bonded Cu/Sn-3.5Ag/Cu microbumps under multiple reflow cycles through Zn Alloying and Ni substrate integration
The transient liquid phase (TLP) bonding process is effective for constructing stacked structures in advanced packaging, as it allows for multiple reflow cycles without remelting. However, the various reflows can cause phase transformations, leading to internal stress-induced voids. Thus, the stability of IMC phases is particularly challenged in 3D stacking structures. Common configurations include Cu/Sn/Cu and Cu/Ni/Sn/Cu. Although Ni improves the stability of the Cu6Sn5 phase, phase transformation to Cu3Sn can still occur, compromising reliability. This study investigates microstructure stability by doping Zn into the Cu/Sn-3.5Ag/Ni system across five reflow cycles. Results demonstrate that Cu-15Zn/Sn-3.5Ag/Ni microbumps reduce void formation and ensuring the phase stability of the (Cu,Ni)6(Sn,Zn)5 to maintain the microstructure stability. The Zn addition inhibits the Cu3Sn layer, while optimizing grain size and orientation of (Cu,Ni)6(Sn,Zn)5. (Cu,Ni)6(Sn,Zn)5 also exhibits increased hardness and reduced modulus (Er). These findings provide critical insights for designing sub-10-μm scale TLP-bonded microbumps in advanced packaging.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.