通过可解释深度学习使用 OCT 成像自动检测视网膜中央动脉闭塞

IF 3.2 Q1 OPHTHALMOLOGY
Ansgar Beuse , Daniel Alexander Wenzel MD , Martin Stephan Spitzer MD , Karl Ulrich Bartz-Schmidt MD , Maximilian Schultheiss MD , Sven Poli MD , Carsten Grohmann PhD, MD
{"title":"通过可解释深度学习使用 OCT 成像自动检测视网膜中央动脉闭塞","authors":"Ansgar Beuse ,&nbsp;Daniel Alexander Wenzel MD ,&nbsp;Martin Stephan Spitzer MD ,&nbsp;Karl Ulrich Bartz-Schmidt MD ,&nbsp;Maximilian Schultheiss MD ,&nbsp;Sven Poli MD ,&nbsp;Carsten Grohmann PhD, MD","doi":"10.1016/j.xops.2024.100630","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To demonstrate the capability of a deep learning model to detect central retinal artery occlusion (CRAO), a retinal pathology with significant clinical urgency, using OCT data.</div></div><div><h3>Design</h3><div>Retrospective, external validation study analyzing OCT and clinical baseline data of 2 institutions via deep learning classification analysis.</div></div><div><h3>Subjects</h3><div>Patients presenting to the University Medical Center Tübingen and the University Medical Center Hamburg-Eppendorf in Germany.</div></div><div><h3>Methods</h3><div>OCT data of patients suffering from CRAO, differential diagnosis with (sub) acute visual loss (central retinal vein occlusion, diabetic macular edema, nonarteritic ischemic optic neuropathy), and from controls were expertly graded and distinguished into 3 groups. Our methodological approach involved a nested multiclass five fold cross-validation classification scheme.</div></div><div><h3>Main Outcome Measures</h3><div>Area under the curve (AUC).</div></div><div><h3>Results</h3><div>The optimal performance of our algorithm was observed using 30 epochs, complemented by an early stopping mechanism to prevent overfitting. Our model followed a multiclass approach, distinguishing among the 3 different classes: control, CRAO, and differential diagnoses. The evaluation was conducted by the “one vs. all” area under the receiver operating characteristics curve (AUC) method. The results demonstrated AUC of 0.96 (95% confidence interval [CI], ± 0.01); 0.99 (95% CI, ± 0.00); and 0.90 (95% CI, ± 0.03) for each class, respectively.</div></div><div><h3>Conclusions</h3><div>Our machine learning algorithm (MLA) exhibited a high AUC, as well as sensitivity and specificity in detecting CRAO and the differential classes, respectively. These findings underscore the potential for deploying MLAs in the identification of less common etiologies within an acute emergency clinical setting.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"5 2","pages":"Article 100630"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Detection of Central Retinal Artery Occlusion Using OCT Imaging via Explainable Deep Learning\",\"authors\":\"Ansgar Beuse ,&nbsp;Daniel Alexander Wenzel MD ,&nbsp;Martin Stephan Spitzer MD ,&nbsp;Karl Ulrich Bartz-Schmidt MD ,&nbsp;Maximilian Schultheiss MD ,&nbsp;Sven Poli MD ,&nbsp;Carsten Grohmann PhD, MD\",\"doi\":\"10.1016/j.xops.2024.100630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>To demonstrate the capability of a deep learning model to detect central retinal artery occlusion (CRAO), a retinal pathology with significant clinical urgency, using OCT data.</div></div><div><h3>Design</h3><div>Retrospective, external validation study analyzing OCT and clinical baseline data of 2 institutions via deep learning classification analysis.</div></div><div><h3>Subjects</h3><div>Patients presenting to the University Medical Center Tübingen and the University Medical Center Hamburg-Eppendorf in Germany.</div></div><div><h3>Methods</h3><div>OCT data of patients suffering from CRAO, differential diagnosis with (sub) acute visual loss (central retinal vein occlusion, diabetic macular edema, nonarteritic ischemic optic neuropathy), and from controls were expertly graded and distinguished into 3 groups. Our methodological approach involved a nested multiclass five fold cross-validation classification scheme.</div></div><div><h3>Main Outcome Measures</h3><div>Area under the curve (AUC).</div></div><div><h3>Results</h3><div>The optimal performance of our algorithm was observed using 30 epochs, complemented by an early stopping mechanism to prevent overfitting. Our model followed a multiclass approach, distinguishing among the 3 different classes: control, CRAO, and differential diagnoses. The evaluation was conducted by the “one vs. all” area under the receiver operating characteristics curve (AUC) method. The results demonstrated AUC of 0.96 (95% confidence interval [CI], ± 0.01); 0.99 (95% CI, ± 0.00); and 0.90 (95% CI, ± 0.03) for each class, respectively.</div></div><div><h3>Conclusions</h3><div>Our machine learning algorithm (MLA) exhibited a high AUC, as well as sensitivity and specificity in detecting CRAO and the differential classes, respectively. These findings underscore the potential for deploying MLAs in the identification of less common etiologies within an acute emergency clinical setting.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>\",\"PeriodicalId\":74363,\"journal\":{\"name\":\"Ophthalmology science\",\"volume\":\"5 2\",\"pages\":\"Article 100630\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ophthalmology science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666914524001660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666914524001660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的利用 OCT 数据证明深度学习模型检测视网膜中央动脉闭塞(CRAO)的能力,CRAO 是一种临床急需的视网膜病变。方法通过深度学习分类分析,对两家机构的 OCT 和临床基线数据进行回顾性外部验证研究。研究对象在德国图宾根大学医学中心和汉堡-埃彭多夫大学医学中心就诊的患者。方法对CRAO患者、伴有(亚)急性视力丧失(视网膜中央静脉闭塞、糖尿病性黄斑水肿、非动脉缺血性视神经病变)的鉴别诊断患者以及对照组的OCT数据进行专家分级,并将其分为3组。主要结果测量曲线下面积(AUC)。结果我们的算法在使用 30 个历元时达到最佳性能,并辅以早期停止机制以防止过度拟合。我们的模型采用了多类方法,区分了 3 个不同的类别:对照、CRAO 和鉴别诊断。评估采用了 "一个与所有 "接收者操作特征曲线下面积(AUC)法。结果显示,每个类别的 AUC 分别为 0.96(95% 置信区间 [CI],± 0.01)、0.99(95% CI,± 0.00)和 0.90(95% CI,± 0.03)。这些发现强调了在急诊临床环境中使用 MLA 识别不常见病因的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Detection of Central Retinal Artery Occlusion Using OCT Imaging via Explainable Deep Learning

Objective

To demonstrate the capability of a deep learning model to detect central retinal artery occlusion (CRAO), a retinal pathology with significant clinical urgency, using OCT data.

Design

Retrospective, external validation study analyzing OCT and clinical baseline data of 2 institutions via deep learning classification analysis.

Subjects

Patients presenting to the University Medical Center Tübingen and the University Medical Center Hamburg-Eppendorf in Germany.

Methods

OCT data of patients suffering from CRAO, differential diagnosis with (sub) acute visual loss (central retinal vein occlusion, diabetic macular edema, nonarteritic ischemic optic neuropathy), and from controls were expertly graded and distinguished into 3 groups. Our methodological approach involved a nested multiclass five fold cross-validation classification scheme.

Main Outcome Measures

Area under the curve (AUC).

Results

The optimal performance of our algorithm was observed using 30 epochs, complemented by an early stopping mechanism to prevent overfitting. Our model followed a multiclass approach, distinguishing among the 3 different classes: control, CRAO, and differential diagnoses. The evaluation was conducted by the “one vs. all” area under the receiver operating characteristics curve (AUC) method. The results demonstrated AUC of 0.96 (95% confidence interval [CI], ± 0.01); 0.99 (95% CI, ± 0.00); and 0.90 (95% CI, ± 0.03) for each class, respectively.

Conclusions

Our machine learning algorithm (MLA) exhibited a high AUC, as well as sensitivity and specificity in detecting CRAO and the differential classes, respectively. These findings underscore the potential for deploying MLAs in the identification of less common etiologies within an acute emergency clinical setting.

Financial Disclosure(s)

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ophthalmology science
Ophthalmology science Ophthalmology
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
89 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信