春季西南大西洋的海气二氧化碳交换、pCO2 驱动因素和浮游植物群落

IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Rodrigo Kerr , Thiago Monteiro , Iole Beatriz M. Orselli , Virginia Maria Tavano , Carlos Rafael B. Mendes
{"title":"春季西南大西洋的海气二氧化碳交换、pCO2 驱动因素和浮游植物群落","authors":"Rodrigo Kerr ,&nbsp;Thiago Monteiro ,&nbsp;Iole Beatriz M. Orselli ,&nbsp;Virginia Maria Tavano ,&nbsp;Carlos Rafael B. Mendes","doi":"10.1016/j.marchem.2024.104472","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrographic properties and carbon dioxide partial pressure (<em>p</em>CO<sub>2</sub>) were measured through underway survey of surface waters during spring 2014, mainly along the Surface Haline Front in the continental shelf-break domain in the southwestern South Atlantic Ocean margin. Additionally, discrete seawater surface samples were collected along the ship track to identify the phytoplankton community and measure seawater chemical properties. This study aims to identify the drivers of the marine CO<sub>2</sub>‑carbonate chemistry and the role played by the phytoplankton composition on changes in the surface marine carbonate properties and the sea-air CO<sub>2</sub> exchanges in two biogeochemical provinces (i.e., South Brazil Bight – SBB, and Southern Brazilian Shelf – SBS) governed by the dynamics of the Brazil Current system in the South Atlantic Ocean. The water masses identified on the surface of the region were Tropical Water (mostly present at offshore regions), Subtropical Shelf Water (mostly present over the continental shelf and slope), and Plata Plume Water (present in the south coastal domain of the SBS). On average, the study area behaved as a weak net CO<sub>2</sub> outgassing zone of 1.2 ± 2.3 mmol m<sup>−2</sup> d<sup>−1</sup> during the spring, despite some subregions behaving as CO<sub>2</sub> ingassing zones. The CO<sub>2</sub> uptake verified in the SBB was related with mesoscale activity bringing cold waters in the region while CO<sub>2</sub> uptake in the continental shelf domain of SBS was associated with the presence of cooler and fresher Plata Plume Water. Changes in total alkalinity and dissolved inorganic carbon at surface were mainly governed by CaCO<sub>3</sub> production in SBB and seawater dilution in SBS, although other processes may also have influenced on their spatial variability. The dominant phytoplankton groups were haptophytes (31 %), <em>Trichodesmium</em> (21 %), and picocyanobateria (28 %), corresponding to <em>Synechococcus</em> (17 %) and <em>Prochlorococcus</em> (11 %). The dominance of the diatom group was associated with a decrease in sea surface <em>p</em>CO<sub>2</sub> (mainly at coastal zones at southern areas), although the sea-air CO<sub>2</sub> exchanges were regulated by cooling process due the presence of Plata Plume Water in that region. Changes in surface pH were related to high concentration of <em>Trichodesmium</em> slicks at offshore zones with the highest microalgae concentration, leading to pH drops of up to 0.4. <em>Trichodesmium</em> slicks likely allowed the development of haptophytes in offshore oligotrophic waters due to its role on N<sub>2</sub> fixation. An increase of ∼20 % in the dominance of haptophytes contribution was verified in that situation, which was likely in a post-bloom development stage, since an increased dissolved inorganic carbon content was observed, associated with a prevalence of net respiration processes.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"267 ","pages":"Article 104472"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sea-air CO2 exchanges, pCO2 drivers and phytoplankton communities in the southwestern South Atlantic Ocean during spring\",\"authors\":\"Rodrigo Kerr ,&nbsp;Thiago Monteiro ,&nbsp;Iole Beatriz M. Orselli ,&nbsp;Virginia Maria Tavano ,&nbsp;Carlos Rafael B. Mendes\",\"doi\":\"10.1016/j.marchem.2024.104472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrographic properties and carbon dioxide partial pressure (<em>p</em>CO<sub>2</sub>) were measured through underway survey of surface waters during spring 2014, mainly along the Surface Haline Front in the continental shelf-break domain in the southwestern South Atlantic Ocean margin. Additionally, discrete seawater surface samples were collected along the ship track to identify the phytoplankton community and measure seawater chemical properties. This study aims to identify the drivers of the marine CO<sub>2</sub>‑carbonate chemistry and the role played by the phytoplankton composition on changes in the surface marine carbonate properties and the sea-air CO<sub>2</sub> exchanges in two biogeochemical provinces (i.e., South Brazil Bight – SBB, and Southern Brazilian Shelf – SBS) governed by the dynamics of the Brazil Current system in the South Atlantic Ocean. The water masses identified on the surface of the region were Tropical Water (mostly present at offshore regions), Subtropical Shelf Water (mostly present over the continental shelf and slope), and Plata Plume Water (present in the south coastal domain of the SBS). On average, the study area behaved as a weak net CO<sub>2</sub> outgassing zone of 1.2 ± 2.3 mmol m<sup>−2</sup> d<sup>−1</sup> during the spring, despite some subregions behaving as CO<sub>2</sub> ingassing zones. The CO<sub>2</sub> uptake verified in the SBB was related with mesoscale activity bringing cold waters in the region while CO<sub>2</sub> uptake in the continental shelf domain of SBS was associated with the presence of cooler and fresher Plata Plume Water. Changes in total alkalinity and dissolved inorganic carbon at surface were mainly governed by CaCO<sub>3</sub> production in SBB and seawater dilution in SBS, although other processes may also have influenced on their spatial variability. The dominant phytoplankton groups were haptophytes (31 %), <em>Trichodesmium</em> (21 %), and picocyanobateria (28 %), corresponding to <em>Synechococcus</em> (17 %) and <em>Prochlorococcus</em> (11 %). The dominance of the diatom group was associated with a decrease in sea surface <em>p</em>CO<sub>2</sub> (mainly at coastal zones at southern areas), although the sea-air CO<sub>2</sub> exchanges were regulated by cooling process due the presence of Plata Plume Water in that region. Changes in surface pH were related to high concentration of <em>Trichodesmium</em> slicks at offshore zones with the highest microalgae concentration, leading to pH drops of up to 0.4. <em>Trichodesmium</em> slicks likely allowed the development of haptophytes in offshore oligotrophic waters due to its role on N<sub>2</sub> fixation. An increase of ∼20 % in the dominance of haptophytes contribution was verified in that situation, which was likely in a post-bloom development stage, since an increased dissolved inorganic carbon content was observed, associated with a prevalence of net respiration processes.</div></div>\",\"PeriodicalId\":18219,\"journal\":{\"name\":\"Marine Chemistry\",\"volume\":\"267 \",\"pages\":\"Article 104472\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304420324001233\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420324001233","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

2014 年春季,主要沿南大西洋西南边缘大陆架-断裂带表层卤素前沿对表层水进行了水文特性和二氧化碳分压(pCO2)测量。此外,还沿船轨采集了离散的海水表层样本,以确定浮游植物群落并测量海水化学特性。这项研究旨在确定海洋二氧化碳-碳酸盐化学的驱动因素,以及浮游植物组成对受南大 西洋巴西洋流系统动态影响的两个生物地球化学区(即南巴西湾和南巴西大陆架)表层 海洋碳酸盐特性变化和海气二氧化碳交换的作用。该区域表层的水团为热带水(主要存在于近海区域)、亚热带大陆架水(主要存在于大陆架和斜坡)和 Plata Plume 水(存在于 SBS 的南部沿海区域)。平均而言,研究区域在春季表现为一个弱的二氧化碳净排气区(1.2 ± 2.3 mmol m-2 d-1),尽管一些子区域表现为二氧化碳吸收区。经核实,SBB 的二氧化碳吸收与中尺度活动给该区域带来的冷水有关,而 SBS 大陆架区域的二氧化碳吸收则与较冷和较新鲜的 Plata 羽流水有关。海面总碱度和溶解性无机碳的变化主要受制于深海带大陆架的 CaCO3 生成和中英海底段的海水稀释,尽管其他过程也可能对其空间变化产生影响。浮游植物的主要种类是七彩藻(31%)、毛藻(21%)和微囊藻(28%),相当于 Synechococcus(17%)和 Prochlorococcus(11%)。硅藻群的优势与海面 pCO2 的下降有关(主要是在南部沿海地区),尽管由于该地区存在 Plata Plume 水,海气 CO2 交换受冷却过程的调节。海面 pH 值的变化与微藻类浓度最高的近海区域高浓度的浮游毛藻有关,导致 pH 值下降达 0.4。浮游毛藻在近海寡营养水体中的作用可能使七鳃鳗得以发展。在这种情况下,由于观察到溶解的无机碳含量增加,与净呼吸过程的盛行有关,因此七鳃鳗占优势的比例增加了 20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sea-air CO2 exchanges, pCO2 drivers and phytoplankton communities in the southwestern South Atlantic Ocean during spring
Hydrographic properties and carbon dioxide partial pressure (pCO2) were measured through underway survey of surface waters during spring 2014, mainly along the Surface Haline Front in the continental shelf-break domain in the southwestern South Atlantic Ocean margin. Additionally, discrete seawater surface samples were collected along the ship track to identify the phytoplankton community and measure seawater chemical properties. This study aims to identify the drivers of the marine CO2‑carbonate chemistry and the role played by the phytoplankton composition on changes in the surface marine carbonate properties and the sea-air CO2 exchanges in two biogeochemical provinces (i.e., South Brazil Bight – SBB, and Southern Brazilian Shelf – SBS) governed by the dynamics of the Brazil Current system in the South Atlantic Ocean. The water masses identified on the surface of the region were Tropical Water (mostly present at offshore regions), Subtropical Shelf Water (mostly present over the continental shelf and slope), and Plata Plume Water (present in the south coastal domain of the SBS). On average, the study area behaved as a weak net CO2 outgassing zone of 1.2 ± 2.3 mmol m−2 d−1 during the spring, despite some subregions behaving as CO2 ingassing zones. The CO2 uptake verified in the SBB was related with mesoscale activity bringing cold waters in the region while CO2 uptake in the continental shelf domain of SBS was associated with the presence of cooler and fresher Plata Plume Water. Changes in total alkalinity and dissolved inorganic carbon at surface were mainly governed by CaCO3 production in SBB and seawater dilution in SBS, although other processes may also have influenced on their spatial variability. The dominant phytoplankton groups were haptophytes (31 %), Trichodesmium (21 %), and picocyanobateria (28 %), corresponding to Synechococcus (17 %) and Prochlorococcus (11 %). The dominance of the diatom group was associated with a decrease in sea surface pCO2 (mainly at coastal zones at southern areas), although the sea-air CO2 exchanges were regulated by cooling process due the presence of Plata Plume Water in that region. Changes in surface pH were related to high concentration of Trichodesmium slicks at offshore zones with the highest microalgae concentration, leading to pH drops of up to 0.4. Trichodesmium slicks likely allowed the development of haptophytes in offshore oligotrophic waters due to its role on N2 fixation. An increase of ∼20 % in the dominance of haptophytes contribution was verified in that situation, which was likely in a post-bloom development stage, since an increased dissolved inorganic carbon content was observed, associated with a prevalence of net respiration processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Chemistry
Marine Chemistry 化学-海洋学
CiteScore
6.00
自引率
3.30%
发文量
70
审稿时长
4.5 months
期刊介绍: Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信