{"title":"各种聚合设计中光伏电池效率对初始条件的敏感性","authors":"Baharak Mohamad Jafari Navadel , Esfandyar Faizi , Baharam Ahansaz , Jaber Jahanbin Sardroodi","doi":"10.1016/j.rinp.2024.108052","DOIUrl":null,"url":null,"abstract":"<div><div>It is thought that nature already exploits quantum mechanical properties to increase the efficiency of solar energy harvesting devices. Thus, the operation of these devices can be enhanced by clever design of a nanoscopic, quantum mechanical system where the quantum coherence plays a crucial role in this process. In this investigation, we develop a donor–acceptor two level trap dipole model converging the key role of quantum coherence and aggregation effects along with different initial states. Our analysis reveals that quenching unwanted emissions is achievable by preparing the system in specific initial state under the effect of optimal spatial aggregation. Interestingly it is observed that characterizing aggregation-induced properties and quantum effects of bandgap engineering can increase the power enhancement up to 35.87% compared with classical counterparts. This encouraging trend suggests a promising novel design aspect of nature-mimicking photovoltaic devices.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"68 ","pages":"Article 108052"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity of photovoltaic cells efficiency to initial conditions in various aggregation designs\",\"authors\":\"Baharak Mohamad Jafari Navadel , Esfandyar Faizi , Baharam Ahansaz , Jaber Jahanbin Sardroodi\",\"doi\":\"10.1016/j.rinp.2024.108052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is thought that nature already exploits quantum mechanical properties to increase the efficiency of solar energy harvesting devices. Thus, the operation of these devices can be enhanced by clever design of a nanoscopic, quantum mechanical system where the quantum coherence plays a crucial role in this process. In this investigation, we develop a donor–acceptor two level trap dipole model converging the key role of quantum coherence and aggregation effects along with different initial states. Our analysis reveals that quenching unwanted emissions is achievable by preparing the system in specific initial state under the effect of optimal spatial aggregation. Interestingly it is observed that characterizing aggregation-induced properties and quantum effects of bandgap engineering can increase the power enhancement up to 35.87% compared with classical counterparts. This encouraging trend suggests a promising novel design aspect of nature-mimicking photovoltaic devices.</div></div>\",\"PeriodicalId\":21042,\"journal\":{\"name\":\"Results in Physics\",\"volume\":\"68 \",\"pages\":\"Article 108052\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221137972400737X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221137972400737X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Sensitivity of photovoltaic cells efficiency to initial conditions in various aggregation designs
It is thought that nature already exploits quantum mechanical properties to increase the efficiency of solar energy harvesting devices. Thus, the operation of these devices can be enhanced by clever design of a nanoscopic, quantum mechanical system where the quantum coherence plays a crucial role in this process. In this investigation, we develop a donor–acceptor two level trap dipole model converging the key role of quantum coherence and aggregation effects along with different initial states. Our analysis reveals that quenching unwanted emissions is achievable by preparing the system in specific initial state under the effect of optimal spatial aggregation. Interestingly it is observed that characterizing aggregation-induced properties and quantum effects of bandgap engineering can increase the power enhancement up to 35.87% compared with classical counterparts. This encouraging trend suggests a promising novel design aspect of nature-mimicking photovoltaic devices.
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.