{"title":"低纬度湿地面积变化对全新世全球大气甲烷浓度趋势的可能影响","authors":"Yunping Song , Hai Xu , Kevin M. Yeager","doi":"10.1016/j.gloplacha.2024.104655","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the causes of variations in global atmospheric methane concentration (GAMC) is an important issue in the study of global climatic changes. Long-term GAMC varied rhythmically on glacial-interglacial timescales, and broadly followed the orbital/suborbital cycles in northern hemisphere solar insolation. Yet the late Holocene has witnessed an increasing GAMC trend since the mid-Holocene, which decouples with the global atmospheric CO<sub>2</sub> concentration trend and the northern hemisphere solar insolation trend. The causes of this decoupling have been extensively studied, but remain highly debated. Here we show that the Holocene GAMC trend closely follows the long-term trend in global low latitude wetland extent as inferred from our lake-level reconstruction and from other existing hydroclimate records. We contend that changes in low latitude wetland extent play an important role in shaping the GAMC trend. We propose that reduced low latitude wetland areas during the mid-Holocene, which were likely due to the submersion of tropical wetlands by rising sea levels, and reduced low latitude wetland areas inferred from lower lake levels, could be responsible for the observed mid-Holocene GAMC drop. Increasing global low latitude wetland areas during the late Holocene are likely responsible for the contemporary increasing GAMC trend.</div></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"244 ","pages":"Article 104655"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Possible influence of low latitude wetland area changes on the Holocene global atmospheric methane concentration trend\",\"authors\":\"Yunping Song , Hai Xu , Kevin M. Yeager\",\"doi\":\"10.1016/j.gloplacha.2024.104655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the causes of variations in global atmospheric methane concentration (GAMC) is an important issue in the study of global climatic changes. Long-term GAMC varied rhythmically on glacial-interglacial timescales, and broadly followed the orbital/suborbital cycles in northern hemisphere solar insolation. Yet the late Holocene has witnessed an increasing GAMC trend since the mid-Holocene, which decouples with the global atmospheric CO<sub>2</sub> concentration trend and the northern hemisphere solar insolation trend. The causes of this decoupling have been extensively studied, but remain highly debated. Here we show that the Holocene GAMC trend closely follows the long-term trend in global low latitude wetland extent as inferred from our lake-level reconstruction and from other existing hydroclimate records. We contend that changes in low latitude wetland extent play an important role in shaping the GAMC trend. We propose that reduced low latitude wetland areas during the mid-Holocene, which were likely due to the submersion of tropical wetlands by rising sea levels, and reduced low latitude wetland areas inferred from lower lake levels, could be responsible for the observed mid-Holocene GAMC drop. Increasing global low latitude wetland areas during the late Holocene are likely responsible for the contemporary increasing GAMC trend.</div></div>\",\"PeriodicalId\":55089,\"journal\":{\"name\":\"Global and Planetary Change\",\"volume\":\"244 \",\"pages\":\"Article 104655\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global and Planetary Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921818124003023\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124003023","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Possible influence of low latitude wetland area changes on the Holocene global atmospheric methane concentration trend
Understanding the causes of variations in global atmospheric methane concentration (GAMC) is an important issue in the study of global climatic changes. Long-term GAMC varied rhythmically on glacial-interglacial timescales, and broadly followed the orbital/suborbital cycles in northern hemisphere solar insolation. Yet the late Holocene has witnessed an increasing GAMC trend since the mid-Holocene, which decouples with the global atmospheric CO2 concentration trend and the northern hemisphere solar insolation trend. The causes of this decoupling have been extensively studied, but remain highly debated. Here we show that the Holocene GAMC trend closely follows the long-term trend in global low latitude wetland extent as inferred from our lake-level reconstruction and from other existing hydroclimate records. We contend that changes in low latitude wetland extent play an important role in shaping the GAMC trend. We propose that reduced low latitude wetland areas during the mid-Holocene, which were likely due to the submersion of tropical wetlands by rising sea levels, and reduced low latitude wetland areas inferred from lower lake levels, could be responsible for the observed mid-Holocene GAMC drop. Increasing global low latitude wetland areas during the late Holocene are likely responsible for the contemporary increasing GAMC trend.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.