Liqiang Cai , Zhuo Chen , Honglei Lang , Maosong Xiang
{"title":"分裂库朗梯形的狄拉克生成算子","authors":"Liqiang Cai , Zhuo Chen , Honglei Lang , Maosong Xiang","doi":"10.1016/j.geomphys.2024.105373","DOIUrl":null,"url":null,"abstract":"<div><div>Given a vector bundle <em>A</em> over a smooth manifold <em>M</em> such that the square root <span><math><mi>L</mi></math></span> of the line bundle <span><math><msup><mrow><mo>∧</mo></mrow><mrow><mi>top</mi></mrow></msup><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>⊗</mo><msup><mrow><mo>∧</mo></mrow><mrow><mi>top</mi></mrow></msup><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>M</mi></math></span> exists, the Clifford bundle associated to the standard split pseudo-Euclidean vector bundle <span><math><mo>(</mo><mi>E</mi><mo>=</mo><mi>A</mi><mo>⊕</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><mo>〈</mo><mo>⋅</mo><mo>,</mo><mo>⋅</mo><mo>〉</mo><mo>)</mo></math></span> admits a spinor bundle <span><math><msup><mrow><mo>∧</mo></mrow><mrow><mo>•</mo></mrow></msup><mi>A</mi><mo>⊗</mo><mi>L</mi></math></span>, whose section space consists of Berezinian half-densities of the graded manifold <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>[</mo><mn>1</mn><mo>]</mo></math></span>. Inspired by Kosmann-Schwarzbach's formula of deriving operator of split Courant algebroid (or proto-bialgebroid) structures on <span><math><mi>A</mi><mo>⊕</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, we give an explicit construction of the associate Dirac generating operator introduced by Alekseev and Xu. We prove that the square of the Dirac generating operator is an invariant of the corresponding split Courant algebroid, and also give an explicit expression of this invariant in terms of modular elements.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"208 ","pages":"Article 105373"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirac generating operators of split Courant algebroids\",\"authors\":\"Liqiang Cai , Zhuo Chen , Honglei Lang , Maosong Xiang\",\"doi\":\"10.1016/j.geomphys.2024.105373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a vector bundle <em>A</em> over a smooth manifold <em>M</em> such that the square root <span><math><mi>L</mi></math></span> of the line bundle <span><math><msup><mrow><mo>∧</mo></mrow><mrow><mi>top</mi></mrow></msup><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>⊗</mo><msup><mrow><mo>∧</mo></mrow><mrow><mi>top</mi></mrow></msup><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>M</mi></math></span> exists, the Clifford bundle associated to the standard split pseudo-Euclidean vector bundle <span><math><mo>(</mo><mi>E</mi><mo>=</mo><mi>A</mi><mo>⊕</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><mo>〈</mo><mo>⋅</mo><mo>,</mo><mo>⋅</mo><mo>〉</mo><mo>)</mo></math></span> admits a spinor bundle <span><math><msup><mrow><mo>∧</mo></mrow><mrow><mo>•</mo></mrow></msup><mi>A</mi><mo>⊗</mo><mi>L</mi></math></span>, whose section space consists of Berezinian half-densities of the graded manifold <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>[</mo><mn>1</mn><mo>]</mo></math></span>. Inspired by Kosmann-Schwarzbach's formula of deriving operator of split Courant algebroid (or proto-bialgebroid) structures on <span><math><mi>A</mi><mo>⊕</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, we give an explicit construction of the associate Dirac generating operator introduced by Alekseev and Xu. We prove that the square of the Dirac generating operator is an invariant of the corresponding split Courant algebroid, and also give an explicit expression of this invariant in terms of modular elements.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"208 \",\"pages\":\"Article 105373\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024002742\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024002742","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给定光滑流形 M 上的向量束 A,使得线束 ∧topA⁎⊗∧topT⁎M 的平方根 L 存在,那么与标准分裂伪欧几里得向量束相关联的克利福德束(E=A⊕A⁎、⋅,〉)允许一个旋量束∧-A⊗L,其截面空间由分级流形 A⁎[1] 的贝雷津半密度组成。受科斯曼-施瓦茨巴赫(Kosmann-Schwarzbach)关于 A⊕A⁎上的分裂库朗网格(或原边网格)结构的导出算子公式的启发,我们给出了阿列克谢耶夫(Alekseev)和徐(Xu)引入的关联狄拉克生成算子的明确构造。我们证明了狄拉克生成算子的平方是相应的分裂库朗拟合结构的不变量,并给出了这个不变量在模元方面的明确表达式。
Dirac generating operators of split Courant algebroids
Given a vector bundle A over a smooth manifold M such that the square root of the line bundle exists, the Clifford bundle associated to the standard split pseudo-Euclidean vector bundle admits a spinor bundle , whose section space consists of Berezinian half-densities of the graded manifold . Inspired by Kosmann-Schwarzbach's formula of deriving operator of split Courant algebroid (or proto-bialgebroid) structures on , we give an explicit construction of the associate Dirac generating operator introduced by Alekseev and Xu. We prove that the square of the Dirac generating operator is an invariant of the corresponding split Courant algebroid, and also give an explicit expression of this invariant in terms of modular elements.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity