Caleb H. Geissler , Nathan L. Haan , Bruno Basso , Ames Fowler , Douglas A. Landis , Tyler J. Lark , Christos T. Maravelias
{"title":"考虑利润、生物多样性和生态系统服务的耕地设计多目标优化模型","authors":"Caleb H. Geissler , Nathan L. Haan , Bruno Basso , Ames Fowler , Douglas A. Landis , Tyler J. Lark , Christos T. Maravelias","doi":"10.1016/j.ecolmodel.2024.110954","DOIUrl":null,"url":null,"abstract":"<div><div>More sustainable agricultural methods are needed to alleviate the decreases in biodiversity and ecosystem services that have occurred because of industrial agriculture. One such method is the inclusion of alternative crops into croplands that can support biodiversity, reduce erosion and chemical runoff, and sequester carbon in the soil. However, the question of where such crops should be planted to balance competing economic and environmental objectives remains open. To this end, we develop a mixed-integer quadratically constrained program to optimize the layout of a cropland considering economic, biodiversity, greenhouse gas emissions, and water quality objectives. We include spatially varying fertilization as a decision variable in addition to crop establishment location. We further include the effect of core area and edges between different crops on biodiversity. To demonstrate the applicability of the model, we apply it to an example field, showing how the optimal cropland design changes as a decision-maker prioritizes different objectives and as edges have different impacts on biodiversity.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"500 ","pages":"Article 110954"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-objective optimization model for cropland design considering profit, biodiversity, and ecosystem services\",\"authors\":\"Caleb H. Geissler , Nathan L. Haan , Bruno Basso , Ames Fowler , Douglas A. Landis , Tyler J. Lark , Christos T. Maravelias\",\"doi\":\"10.1016/j.ecolmodel.2024.110954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>More sustainable agricultural methods are needed to alleviate the decreases in biodiversity and ecosystem services that have occurred because of industrial agriculture. One such method is the inclusion of alternative crops into croplands that can support biodiversity, reduce erosion and chemical runoff, and sequester carbon in the soil. However, the question of where such crops should be planted to balance competing economic and environmental objectives remains open. To this end, we develop a mixed-integer quadratically constrained program to optimize the layout of a cropland considering economic, biodiversity, greenhouse gas emissions, and water quality objectives. We include spatially varying fertilization as a decision variable in addition to crop establishment location. We further include the effect of core area and edges between different crops on biodiversity. To demonstrate the applicability of the model, we apply it to an example field, showing how the optimal cropland design changes as a decision-maker prioritizes different objectives and as edges have different impacts on biodiversity.</div></div>\",\"PeriodicalId\":51043,\"journal\":{\"name\":\"Ecological Modelling\",\"volume\":\"500 \",\"pages\":\"Article 110954\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Modelling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304380024003429\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380024003429","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
A multi-objective optimization model for cropland design considering profit, biodiversity, and ecosystem services
More sustainable agricultural methods are needed to alleviate the decreases in biodiversity and ecosystem services that have occurred because of industrial agriculture. One such method is the inclusion of alternative crops into croplands that can support biodiversity, reduce erosion and chemical runoff, and sequester carbon in the soil. However, the question of where such crops should be planted to balance competing economic and environmental objectives remains open. To this end, we develop a mixed-integer quadratically constrained program to optimize the layout of a cropland considering economic, biodiversity, greenhouse gas emissions, and water quality objectives. We include spatially varying fertilization as a decision variable in addition to crop establishment location. We further include the effect of core area and edges between different crops on biodiversity. To demonstrate the applicability of the model, we apply it to an example field, showing how the optimal cropland design changes as a decision-maker prioritizes different objectives and as edges have different impacts on biodiversity.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).