通过应变梯度弹性理论研究双向材料梯度对功能梯度材料模态 III 裂纹的影响

IF 4.4 2区 工程技术 Q1 MECHANICS
Rakesh Kumar Sharma , Kamlesh Jangid , Y. Eugene Pak
{"title":"通过应变梯度弹性理论研究双向材料梯度对功能梯度材料模态 III 裂纹的影响","authors":"Rakesh Kumar Sharma ,&nbsp;Kamlesh Jangid ,&nbsp;Y. Eugene Pak","doi":"10.1016/j.euromechsol.2024.105496","DOIUrl":null,"url":null,"abstract":"<div><div>In contrast to classical mechanics, which primarily relies on continuum assumptions and neglects micro-structural effects, the strain gradient elasticity (SGE) theory represents a paradigm shift in understanding the mechanical behavior of materials at small length scales. In this article, the influence of the bi-directional material gradation on a mode-III crack in functionally graded material via SGE theory is studied. The SGE theory uses two material characteristic lengths, <span><math><mi>ℓ</mi></math></span> and <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, to account for volumetric and surface strain-gradient factors, respectively. Our investigation is centered on a material gradation model assumed to vary exponentially, with the shear modulus represented as <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mi>β</mi><mi>x</mi><mo>+</mo><mi>γ</mi><mi>y</mi></mrow></msup></mrow></math></span>, where <span><math><mi>β</mi></math></span> and <span><math><mi>γ</mi></math></span> are material gradation constants. To address the crack boundary value problem under consideration, we employ a methodology combining Fourier transforms and an innovative hyper-singular integro-differential equation approach. Using this approach, we systematically formulate a system of equations, which can be solved by selecting suitable collocation points. The closed-form analytical expressions are derived for the standard fracture parameters such as crack surface displacement (CSD), stress intensity factor (SIF), and energy release rate (ERR). Numerical studies are illustrated for the derived standard fractures, and the influence of these parameters <span><math><mi>β</mi></math></span>, <span><math><mi>γ</mi></math></span>, <span><math><mi>ℓ</mi></math></span>, <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, and applied shear load is graphically presented. Through comprehensive analysis, our aim is to provide insights into the complex interplay between material parameters, loading conditions, and crack behavior in functionally graded materials.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"110 ","pages":"Article 105496"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of bi-directional material gradation on a mode-III crack in functionally graded material via strain gradient elasticity theory\",\"authors\":\"Rakesh Kumar Sharma ,&nbsp;Kamlesh Jangid ,&nbsp;Y. Eugene Pak\",\"doi\":\"10.1016/j.euromechsol.2024.105496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In contrast to classical mechanics, which primarily relies on continuum assumptions and neglects micro-structural effects, the strain gradient elasticity (SGE) theory represents a paradigm shift in understanding the mechanical behavior of materials at small length scales. In this article, the influence of the bi-directional material gradation on a mode-III crack in functionally graded material via SGE theory is studied. The SGE theory uses two material characteristic lengths, <span><math><mi>ℓ</mi></math></span> and <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, to account for volumetric and surface strain-gradient factors, respectively. Our investigation is centered on a material gradation model assumed to vary exponentially, with the shear modulus represented as <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mi>β</mi><mi>x</mi><mo>+</mo><mi>γ</mi><mi>y</mi></mrow></msup></mrow></math></span>, where <span><math><mi>β</mi></math></span> and <span><math><mi>γ</mi></math></span> are material gradation constants. To address the crack boundary value problem under consideration, we employ a methodology combining Fourier transforms and an innovative hyper-singular integro-differential equation approach. Using this approach, we systematically formulate a system of equations, which can be solved by selecting suitable collocation points. The closed-form analytical expressions are derived for the standard fracture parameters such as crack surface displacement (CSD), stress intensity factor (SIF), and energy release rate (ERR). Numerical studies are illustrated for the derived standard fractures, and the influence of these parameters <span><math><mi>β</mi></math></span>, <span><math><mi>γ</mi></math></span>, <span><math><mi>ℓ</mi></math></span>, <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, and applied shear load is graphically presented. Through comprehensive analysis, our aim is to provide insights into the complex interplay between material parameters, loading conditions, and crack behavior in functionally graded materials.</div></div>\",\"PeriodicalId\":50483,\"journal\":{\"name\":\"European Journal of Mechanics A-Solids\",\"volume\":\"110 \",\"pages\":\"Article 105496\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics A-Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997753824002766\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753824002766","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

经典力学主要依赖连续性假设,忽略了微观结构效应,与之相反,应变梯度弹性(SGE)理论代表了理解材料在小长度尺度上力学行为的范式转变。本文通过 SGE 理论研究了双向材料梯度对功能梯度材料模态 III 裂纹的影响。SGE 理论使用两个材料特征长度,即 ℓ 和 ℓ′,来分别考虑体积和表面应变梯度因素。我们的研究以假定为指数变化的材料级配模型为中心,剪切模量表示为 G(x,y)=G0eβx+γy ,其中 β 和 γ 是材料级配常数。为了解决所考虑的裂缝边界值问题,我们采用了一种结合傅立叶变换和创新超弦积分微分方程的方法。利用这种方法,我们系统地提出了一个方程组,通过选择合适的定位点可以求解该方程组。我们推导出了裂纹表面位移(CSD)、应力强度因子(SIF)和能量释放率(ERR)等标准断裂参数的闭式解析表达式。对推导出的标准断裂进行了数值研究,并以图表形式展示了这些参数 β、γ、ℓ、ℓ′ 和施加的剪切载荷的影响。通过综合分析,我们希望深入了解功能分级材料中材料参数、加载条件和裂纹行为之间复杂的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The influence of bi-directional material gradation on a mode-III crack in functionally graded material via strain gradient elasticity theory
In contrast to classical mechanics, which primarily relies on continuum assumptions and neglects micro-structural effects, the strain gradient elasticity (SGE) theory represents a paradigm shift in understanding the mechanical behavior of materials at small length scales. In this article, the influence of the bi-directional material gradation on a mode-III crack in functionally graded material via SGE theory is studied. The SGE theory uses two material characteristic lengths, and , to account for volumetric and surface strain-gradient factors, respectively. Our investigation is centered on a material gradation model assumed to vary exponentially, with the shear modulus represented as G(x,y)=G0eβx+γy, where β and γ are material gradation constants. To address the crack boundary value problem under consideration, we employ a methodology combining Fourier transforms and an innovative hyper-singular integro-differential equation approach. Using this approach, we systematically formulate a system of equations, which can be solved by selecting suitable collocation points. The closed-form analytical expressions are derived for the standard fracture parameters such as crack surface displacement (CSD), stress intensity factor (SIF), and energy release rate (ERR). Numerical studies are illustrated for the derived standard fractures, and the influence of these parameters β, γ, , , and applied shear load is graphically presented. Through comprehensive analysis, our aim is to provide insights into the complex interplay between material parameters, loading conditions, and crack behavior in functionally graded materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信