{"title":"基于能量转换的异质压电半导体热电结构的机械调节策略","authors":"Lingyun Guo, Yizhan Yang","doi":"10.1016/j.euromechsol.2024.105503","DOIUrl":null,"url":null,"abstract":"<div><div>The piezoelectric properties inherent in piezoelectric semiconductors facilitate the manipulation of charge carrier redistribution, enabling the fabrication of electronic devices with adjustable characteristics. However, despite this capability, our understanding of the energy conversion and transfer mechanisms within such devices remains limited. By discarding the assumption of low injection and the approximation of depletion layer, a nonlinear model was developed on piezoelectric semiconductor thermoelectric structure (PS-TES), considering the penetration of hot electrons and regulation of mechanical loadings. The presented model reveals that the input electric energy is partitioned, with a portion being converted into electric potential energy stored (EPES) in non-equilibrium carriers and another portion being the energy dissipation (ED) due to the electrothermal action. Furthermore, from an energy conservation standpoint, a interesting competitive phenomenon between electric potential energy conversion and energy dissipation is obtained. The power of external electric energy input and internal electric energy conversion can be manipulated via mechanical loadings, thereby adjusting the energy conversion process of PS-TES. Finally, we found that the compressive loadings can increase EPES and reduce ED, thereby optimizing the cooling effect at cold end. While tensile loadings can reduce EPES and increase ED, thus causing the PS-TES to locally heat up and produce a heating effect. This study potentially offers a means to switch the performance of TES and provides fresh insights into energy conversion processes within piezoelectric semiconductors.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"110 ","pages":"Article 105503"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical regulation strategy for heterogeneous piezoelectric semiconductor thermoelectric structure based on energy conversion\",\"authors\":\"Lingyun Guo, Yizhan Yang\",\"doi\":\"10.1016/j.euromechsol.2024.105503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The piezoelectric properties inherent in piezoelectric semiconductors facilitate the manipulation of charge carrier redistribution, enabling the fabrication of electronic devices with adjustable characteristics. However, despite this capability, our understanding of the energy conversion and transfer mechanisms within such devices remains limited. By discarding the assumption of low injection and the approximation of depletion layer, a nonlinear model was developed on piezoelectric semiconductor thermoelectric structure (PS-TES), considering the penetration of hot electrons and regulation of mechanical loadings. The presented model reveals that the input electric energy is partitioned, with a portion being converted into electric potential energy stored (EPES) in non-equilibrium carriers and another portion being the energy dissipation (ED) due to the electrothermal action. Furthermore, from an energy conservation standpoint, a interesting competitive phenomenon between electric potential energy conversion and energy dissipation is obtained. The power of external electric energy input and internal electric energy conversion can be manipulated via mechanical loadings, thereby adjusting the energy conversion process of PS-TES. Finally, we found that the compressive loadings can increase EPES and reduce ED, thereby optimizing the cooling effect at cold end. While tensile loadings can reduce EPES and increase ED, thus causing the PS-TES to locally heat up and produce a heating effect. This study potentially offers a means to switch the performance of TES and provides fresh insights into energy conversion processes within piezoelectric semiconductors.</div></div>\",\"PeriodicalId\":50483,\"journal\":{\"name\":\"European Journal of Mechanics A-Solids\",\"volume\":\"110 \",\"pages\":\"Article 105503\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics A-Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997753824002833\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753824002833","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Mechanical regulation strategy for heterogeneous piezoelectric semiconductor thermoelectric structure based on energy conversion
The piezoelectric properties inherent in piezoelectric semiconductors facilitate the manipulation of charge carrier redistribution, enabling the fabrication of electronic devices with adjustable characteristics. However, despite this capability, our understanding of the energy conversion and transfer mechanisms within such devices remains limited. By discarding the assumption of low injection and the approximation of depletion layer, a nonlinear model was developed on piezoelectric semiconductor thermoelectric structure (PS-TES), considering the penetration of hot electrons and regulation of mechanical loadings. The presented model reveals that the input electric energy is partitioned, with a portion being converted into electric potential energy stored (EPES) in non-equilibrium carriers and another portion being the energy dissipation (ED) due to the electrothermal action. Furthermore, from an energy conservation standpoint, a interesting competitive phenomenon between electric potential energy conversion and energy dissipation is obtained. The power of external electric energy input and internal electric energy conversion can be manipulated via mechanical loadings, thereby adjusting the energy conversion process of PS-TES. Finally, we found that the compressive loadings can increase EPES and reduce ED, thereby optimizing the cooling effect at cold end. While tensile loadings can reduce EPES and increase ED, thus causing the PS-TES to locally heat up and produce a heating effect. This study potentially offers a means to switch the performance of TES and provides fresh insights into energy conversion processes within piezoelectric semiconductors.
期刊介绍:
The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.