Ellen K. Link , Alina Tscherne , Gerd Sutter , Emily R. Smith , Marc Gurwith , Robert T. Chen , Asisa Volz , For the Benefit-Risk Assessment of VAccines by TechnolOgy Working Group (BRAVATO; ex-V3SWG)
{"title":"布莱顿合作标准化模板,其中包含对基于非复制改良疫苗病毒安卡拉病毒载体的病毒载体疫苗进行效益/风险评估的主要考虑因素","authors":"Ellen K. Link , Alina Tscherne , Gerd Sutter , Emily R. Smith , Marc Gurwith , Robert T. Chen , Asisa Volz , For the Benefit-Risk Assessment of VAccines by TechnolOgy Working Group (BRAVATO; ex-V3SWG)","doi":"10.1016/j.vaccine.2024.126521","DOIUrl":null,"url":null,"abstract":"<div><div>The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript provides an overview of Modified Vaccinia virus Ankara (MVA)-vectored vaccines and reviews molecular and biological key features of this platform. In particular, this review aims to provide fundamental information about the promising candidate vaccine MVA-MERS-S which has been evaluated successfully in different preclinical animal models and has undergone clinical testing including a phase Ib study involving more than 170 participants.</div><div>Infectious diseases continue to be a major cause of human death worldwide. In this context, emerging zoonotic infectious diseases pose a particular challenge for public health systems. In the last two decades, three different respiratory coronaviruses, including the Middle East respiratory syndrome Coronavirus (MERS-CoV) have emerged. For many years, safe and efficacious vaccines have been a major tool to combat infectious diseases.</div><div>Here, we report on a promising candidate vaccine (MVA-MERS-S) against MERS-CoV based on MVA. Upon application, MVA-MERS-S has been well tolerated and immunogenic, inducing both, cellular and humoral immune responses in different animal models and humans. We demonstrate that the MVA vector platform, with the example of MVA-MERS-S, is a viable and effective tool for producing safe, immunogenic, and efficient vaccines against emerging infectious diseases.</div></div>","PeriodicalId":23491,"journal":{"name":"Vaccine","volume":"43 ","pages":"Article 126521"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Brighton collaboration standardized template with key considerations for a benefit/risk assessment for a viral vector vaccine based on a non-replicating modified vaccinia virus Ankara viral vector\",\"authors\":\"Ellen K. Link , Alina Tscherne , Gerd Sutter , Emily R. Smith , Marc Gurwith , Robert T. Chen , Asisa Volz , For the Benefit-Risk Assessment of VAccines by TechnolOgy Working Group (BRAVATO; ex-V3SWG)\",\"doi\":\"10.1016/j.vaccine.2024.126521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript provides an overview of Modified Vaccinia virus Ankara (MVA)-vectored vaccines and reviews molecular and biological key features of this platform. In particular, this review aims to provide fundamental information about the promising candidate vaccine MVA-MERS-S which has been evaluated successfully in different preclinical animal models and has undergone clinical testing including a phase Ib study involving more than 170 participants.</div><div>Infectious diseases continue to be a major cause of human death worldwide. In this context, emerging zoonotic infectious diseases pose a particular challenge for public health systems. In the last two decades, three different respiratory coronaviruses, including the Middle East respiratory syndrome Coronavirus (MERS-CoV) have emerged. For many years, safe and efficacious vaccines have been a major tool to combat infectious diseases.</div><div>Here, we report on a promising candidate vaccine (MVA-MERS-S) against MERS-CoV based on MVA. Upon application, MVA-MERS-S has been well tolerated and immunogenic, inducing both, cellular and humoral immune responses in different animal models and humans. We demonstrate that the MVA vector platform, with the example of MVA-MERS-S, is a viable and effective tool for producing safe, immunogenic, and efficient vaccines against emerging infectious diseases.</div></div>\",\"PeriodicalId\":23491,\"journal\":{\"name\":\"Vaccine\",\"volume\":\"43 \",\"pages\":\"Article 126521\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vaccine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264410X24012039\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264410X24012039","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
A Brighton collaboration standardized template with key considerations for a benefit/risk assessment for a viral vector vaccine based on a non-replicating modified vaccinia virus Ankara viral vector
The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript provides an overview of Modified Vaccinia virus Ankara (MVA)-vectored vaccines and reviews molecular and biological key features of this platform. In particular, this review aims to provide fundamental information about the promising candidate vaccine MVA-MERS-S which has been evaluated successfully in different preclinical animal models and has undergone clinical testing including a phase Ib study involving more than 170 participants.
Infectious diseases continue to be a major cause of human death worldwide. In this context, emerging zoonotic infectious diseases pose a particular challenge for public health systems. In the last two decades, three different respiratory coronaviruses, including the Middle East respiratory syndrome Coronavirus (MERS-CoV) have emerged. For many years, safe and efficacious vaccines have been a major tool to combat infectious diseases.
Here, we report on a promising candidate vaccine (MVA-MERS-S) against MERS-CoV based on MVA. Upon application, MVA-MERS-S has been well tolerated and immunogenic, inducing both, cellular and humoral immune responses in different animal models and humans. We demonstrate that the MVA vector platform, with the example of MVA-MERS-S, is a viable and effective tool for producing safe, immunogenic, and efficient vaccines against emerging infectious diseases.
期刊介绍:
Vaccine is unique in publishing the highest quality science across all disciplines relevant to the field of vaccinology - all original article submissions across basic and clinical research, vaccine manufacturing, history, public policy, behavioral science and ethics, social sciences, safety, and many other related areas are welcomed. The submission categories as given in the Guide for Authors indicate where we receive the most papers. Papers outside these major areas are also welcome and authors are encouraged to contact us with specific questions.