带延迟的非线性双曲系统的爆炸研究

Q1 Mathematics
Mohammad Kafini, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi
{"title":"带延迟的非线性双曲系统的爆炸研究","authors":"Mohammad Kafini,&nbsp;Mohammad M. Al-Gharabli,&nbsp;Adel M. Al-Mahdi","doi":"10.1016/j.padiff.2024.100984","DOIUrl":null,"url":null,"abstract":"<div><div>This work examines a system of wave equations that feature frictional damping and nonlinear sources. The two equations are affected by constant delay. By demonstrating that there exist solutions with negative initial energy that blow up in a finite amount of time, we prove a blow-up result. Levine’s concavity approach is a basis of the proof. Additionally, by estimating the lower bound, we dominate the blow-up time from below.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100984"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow-up study of a nonlinear hyperbolic system with delay\",\"authors\":\"Mohammad Kafini,&nbsp;Mohammad M. Al-Gharabli,&nbsp;Adel M. Al-Mahdi\",\"doi\":\"10.1016/j.padiff.2024.100984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work examines a system of wave equations that feature frictional damping and nonlinear sources. The two equations are affected by constant delay. By demonstrating that there exist solutions with negative initial energy that blow up in a finite amount of time, we prove a blow-up result. Levine’s concavity approach is a basis of the proof. Additionally, by estimating the lower bound, we dominate the blow-up time from below.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100984\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266681812400370X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266681812400370X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

这项工作研究的是以摩擦阻尼和非线性源为特征的波方程系统。这两个方程受到恒定延迟的影响。通过证明存在在有限时间内炸毁的负初始能量解,我们证明了炸毁结果。莱文的凹性方法是证明的基础。此外,通过对下限的估计,我们从下往上控制了炸毁时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow-up study of a nonlinear hyperbolic system with delay
This work examines a system of wave equations that feature frictional damping and nonlinear sources. The two equations are affected by constant delay. By demonstrating that there exist solutions with negative initial energy that blow up in a finite amount of time, we prove a blow-up result. Levine’s concavity approach is a basis of the proof. Additionally, by estimating the lower bound, we dominate the blow-up time from below.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信