Peng Chang , Jingwen Ma , Ke Li , Wei Wang , Dan Chen , Zhe Liu , Wenhua Zhan , Yun Zeng , Yonghua Zhan
{"title":"跨越血脑屏障的 5-羟色氨酸人工突触小泡用于抑郁症的速效治疗","authors":"Peng Chang , Jingwen Ma , Ke Li , Wei Wang , Dan Chen , Zhe Liu , Wenhua Zhan , Yun Zeng , Yonghua Zhan","doi":"10.1016/j.mtbio.2024.101357","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional antidepressants are slow to work and have serious side effects and poor response rates. As a precursor to 5-hydroxytryptamine (5-HT), 5-hydroxytryptophan (5-HTP) can be safely increased in concentration and rapidly metabolized into 5-HT in the brain, but the effectiveness of 5-HTP is severely limited due to its short half-life and lack of targeting. To traverse the blood-brain barrier (BBB) and achieve effective targeting, we designed a near-infrared (NIR) light-responsive artificial synaptic vesicles functionalized with an aptamer and loaded with 5-HTP and IR780. Photothermal approaches could improve the BBB permeability, and photothermal-triggered 5-HTP release could also be achieved. The ability to penetrate the BBB and enhance cerebral drug enrichment could be observed by fluorescence imaging. In addition, the nanoplatform incorporating the NIR laser considerably reduced depressive-like behaviors in chronic unpredictable moderate stress model mice in only 4 weeks, suggesting a potential approach for rapid-acting depression treatment.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101357"},"PeriodicalIF":8.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"5-Hydroxytryptophan artificial synaptic vesicles across the blood-brain barrier for the rapid-acting treatment of depressive disorder\",\"authors\":\"Peng Chang , Jingwen Ma , Ke Li , Wei Wang , Dan Chen , Zhe Liu , Wenhua Zhan , Yun Zeng , Yonghua Zhan\",\"doi\":\"10.1016/j.mtbio.2024.101357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conventional antidepressants are slow to work and have serious side effects and poor response rates. As a precursor to 5-hydroxytryptamine (5-HT), 5-hydroxytryptophan (5-HTP) can be safely increased in concentration and rapidly metabolized into 5-HT in the brain, but the effectiveness of 5-HTP is severely limited due to its short half-life and lack of targeting. To traverse the blood-brain barrier (BBB) and achieve effective targeting, we designed a near-infrared (NIR) light-responsive artificial synaptic vesicles functionalized with an aptamer and loaded with 5-HTP and IR780. Photothermal approaches could improve the BBB permeability, and photothermal-triggered 5-HTP release could also be achieved. The ability to penetrate the BBB and enhance cerebral drug enrichment could be observed by fluorescence imaging. In addition, the nanoplatform incorporating the NIR laser considerably reduced depressive-like behaviors in chronic unpredictable moderate stress model mice in only 4 weeks, suggesting a potential approach for rapid-acting depression treatment.</div></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"29 \",\"pages\":\"Article 101357\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424004186\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424004186","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
5-Hydroxytryptophan artificial synaptic vesicles across the blood-brain barrier for the rapid-acting treatment of depressive disorder
Conventional antidepressants are slow to work and have serious side effects and poor response rates. As a precursor to 5-hydroxytryptamine (5-HT), 5-hydroxytryptophan (5-HTP) can be safely increased in concentration and rapidly metabolized into 5-HT in the brain, but the effectiveness of 5-HTP is severely limited due to its short half-life and lack of targeting. To traverse the blood-brain barrier (BBB) and achieve effective targeting, we designed a near-infrared (NIR) light-responsive artificial synaptic vesicles functionalized with an aptamer and loaded with 5-HTP and IR780. Photothermal approaches could improve the BBB permeability, and photothermal-triggered 5-HTP release could also be achieved. The ability to penetrate the BBB and enhance cerebral drug enrichment could be observed by fluorescence imaging. In addition, the nanoplatform incorporating the NIR laser considerably reduced depressive-like behaviors in chronic unpredictable moderate stress model mice in only 4 weeks, suggesting a potential approach for rapid-acting depression treatment.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).