Kaixuan Ma , Lei Yang , Wenzhao Li , Kai Chen , Luoran Shang , Yushu Bai , Yuanjin Zhao
{"title":"用于骨缺损光热疗法的贻贝启发多生物活性微球支架","authors":"Kaixuan Ma , Lei Yang , Wenzhao Li , Kai Chen , Luoran Shang , Yushu Bai , Yuanjin Zhao","doi":"10.1016/j.mtbio.2024.101363","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogel microspheres hold great promise as scaffolds for bone repair. Their hydrated matrix, biocompatibility, and functional properties make them an attractive choice in regenerative medicine. However, the irregularity of defect requires shape adaptability of the microspheres. Additionally, there is still room for improvement regarding the component of the microspheres to achieve sufficient bioactivity. Here, we prepare multi-bioactive microspheres composed of methacrylated silk fibroin (SFMA) <em>via</em> microfluidic electrospray. Magnesium ascorbyl phosphate (MAP) is encapsulated within the microspheres, whose sustained release facilitates angiogenesis and osteogenic differentiation. The microspheres are further coated with a polydopamine (PDA) layer, allowing them to assemble <em>in</em> <em>situ</em> into a scaffold that conforms to the non-uniform contours of bone defects. The photothermal conversion capability of PDA also provides mild photothermal stimulation to further promote bone regeneration. Based on the synergistic effects, our <em>in vivo</em> experiments demonstrated that the microsphere scaffold effectively promotes bone defect healing. Thus, this multi-bioactive scaffold offers a versatile strategy for bone repair with promising clinical potential.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101363"},"PeriodicalIF":8.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mussel-inspired multi-bioactive microsphere scaffolds for bone defect photothermal therapy\",\"authors\":\"Kaixuan Ma , Lei Yang , Wenzhao Li , Kai Chen , Luoran Shang , Yushu Bai , Yuanjin Zhao\",\"doi\":\"10.1016/j.mtbio.2024.101363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogel microspheres hold great promise as scaffolds for bone repair. Their hydrated matrix, biocompatibility, and functional properties make them an attractive choice in regenerative medicine. However, the irregularity of defect requires shape adaptability of the microspheres. Additionally, there is still room for improvement regarding the component of the microspheres to achieve sufficient bioactivity. Here, we prepare multi-bioactive microspheres composed of methacrylated silk fibroin (SFMA) <em>via</em> microfluidic electrospray. Magnesium ascorbyl phosphate (MAP) is encapsulated within the microspheres, whose sustained release facilitates angiogenesis and osteogenic differentiation. The microspheres are further coated with a polydopamine (PDA) layer, allowing them to assemble <em>in</em> <em>situ</em> into a scaffold that conforms to the non-uniform contours of bone defects. The photothermal conversion capability of PDA also provides mild photothermal stimulation to further promote bone regeneration. Based on the synergistic effects, our <em>in vivo</em> experiments demonstrated that the microsphere scaffold effectively promotes bone defect healing. Thus, this multi-bioactive scaffold offers a versatile strategy for bone repair with promising clinical potential.</div></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"29 \",\"pages\":\"Article 101363\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424004241\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424004241","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Mussel-inspired multi-bioactive microsphere scaffolds for bone defect photothermal therapy
Hydrogel microspheres hold great promise as scaffolds for bone repair. Their hydrated matrix, biocompatibility, and functional properties make them an attractive choice in regenerative medicine. However, the irregularity of defect requires shape adaptability of the microspheres. Additionally, there is still room for improvement regarding the component of the microspheres to achieve sufficient bioactivity. Here, we prepare multi-bioactive microspheres composed of methacrylated silk fibroin (SFMA) via microfluidic electrospray. Magnesium ascorbyl phosphate (MAP) is encapsulated within the microspheres, whose sustained release facilitates angiogenesis and osteogenic differentiation. The microspheres are further coated with a polydopamine (PDA) layer, allowing them to assemble insitu into a scaffold that conforms to the non-uniform contours of bone defects. The photothermal conversion capability of PDA also provides mild photothermal stimulation to further promote bone regeneration. Based on the synergistic effects, our in vivo experiments demonstrated that the microsphere scaffold effectively promotes bone defect healing. Thus, this multi-bioactive scaffold offers a versatile strategy for bone repair with promising clinical potential.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).