Lianghua Jiang , Yubin Wu , Zonghan Xu , Mingzhuang Hou , Shayang Chen , Chao Cheng , Dan Hu , Daming Lu , Xuesong Zhu , Chong Li
{"title":"利用可注射水凝胶中的硫化氢引导免疫反应和破骨细胞生成平衡,治疗骨质疏松症","authors":"Lianghua Jiang , Yubin Wu , Zonghan Xu , Mingzhuang Hou , Shayang Chen , Chao Cheng , Dan Hu , Daming Lu , Xuesong Zhu , Chong Li","doi":"10.1016/j.mtbio.2024.101338","DOIUrl":null,"url":null,"abstract":"<div><div>Elevated levels of oxidative stress, inflammation, and a dysregulated osteoclastogenesis balance frequently characterize the microenvironment of osteoporosis, which impedes the processes of healing and repair. Existing treatment approaches are limited in scope and rely primarily on factors and drugs. An injectable hydrogel designed for the ROS-responsive release of H<sub>2</sub>S gas is presented in this study. The first network of the hydrogel comprises sodium alginate (SA-SATO) chelated with S-aroylthiooxime (SATO) and an H<sub>2</sub>S-generating group, while the second network is composed of photocrosslinkable PEGDA. Through the integration of Cys-releasing microspheres that are reactive with ROS, a composite hydrogel was developed that exhibited advantageous mechanical characteristics and biosafety. The composite hydrogel effectively promoted osteogenic differentiation of mesenchymal stem cells, modulated macrophage polarization, decreased inflammatory responses, and halted cell apoptosis, as evidenced by in vitro experiments. Additionally, it released H<sub>2</sub>S gas and mitigated excess ROS in cells. The efficacy of the composite hydrogel in promoting bone defect repair and regeneration in an osteoporotic model was further validated by in vivo findings. In summary, the composite hydrogel exhibits potential as a viable approach to address osteoporotic bone defects by harmonizing osteogenesis and osteoclast activity, modulating the microenvironment of bone injuries, and reducing inflammation. Consequently, it presents a viable strategy for the efficient repair of bone defects.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101338"},"PeriodicalIF":8.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing hydrogen sulfide in injectable hydrogels that guide the immune response and osteoclastogenesis balance for osteoporosis treatment\",\"authors\":\"Lianghua Jiang , Yubin Wu , Zonghan Xu , Mingzhuang Hou , Shayang Chen , Chao Cheng , Dan Hu , Daming Lu , Xuesong Zhu , Chong Li\",\"doi\":\"10.1016/j.mtbio.2024.101338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Elevated levels of oxidative stress, inflammation, and a dysregulated osteoclastogenesis balance frequently characterize the microenvironment of osteoporosis, which impedes the processes of healing and repair. Existing treatment approaches are limited in scope and rely primarily on factors and drugs. An injectable hydrogel designed for the ROS-responsive release of H<sub>2</sub>S gas is presented in this study. The first network of the hydrogel comprises sodium alginate (SA-SATO) chelated with S-aroylthiooxime (SATO) and an H<sub>2</sub>S-generating group, while the second network is composed of photocrosslinkable PEGDA. Through the integration of Cys-releasing microspheres that are reactive with ROS, a composite hydrogel was developed that exhibited advantageous mechanical characteristics and biosafety. The composite hydrogel effectively promoted osteogenic differentiation of mesenchymal stem cells, modulated macrophage polarization, decreased inflammatory responses, and halted cell apoptosis, as evidenced by in vitro experiments. Additionally, it released H<sub>2</sub>S gas and mitigated excess ROS in cells. The efficacy of the composite hydrogel in promoting bone defect repair and regeneration in an osteoporotic model was further validated by in vivo findings. In summary, the composite hydrogel exhibits potential as a viable approach to address osteoporotic bone defects by harmonizing osteogenesis and osteoclast activity, modulating the microenvironment of bone injuries, and reducing inflammation. Consequently, it presents a viable strategy for the efficient repair of bone defects.</div></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"29 \",\"pages\":\"Article 101338\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424003995\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003995","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Harnessing hydrogen sulfide in injectable hydrogels that guide the immune response and osteoclastogenesis balance for osteoporosis treatment
Elevated levels of oxidative stress, inflammation, and a dysregulated osteoclastogenesis balance frequently characterize the microenvironment of osteoporosis, which impedes the processes of healing and repair. Existing treatment approaches are limited in scope and rely primarily on factors and drugs. An injectable hydrogel designed for the ROS-responsive release of H2S gas is presented in this study. The first network of the hydrogel comprises sodium alginate (SA-SATO) chelated with S-aroylthiooxime (SATO) and an H2S-generating group, while the second network is composed of photocrosslinkable PEGDA. Through the integration of Cys-releasing microspheres that are reactive with ROS, a composite hydrogel was developed that exhibited advantageous mechanical characteristics and biosafety. The composite hydrogel effectively promoted osteogenic differentiation of mesenchymal stem cells, modulated macrophage polarization, decreased inflammatory responses, and halted cell apoptosis, as evidenced by in vitro experiments. Additionally, it released H2S gas and mitigated excess ROS in cells. The efficacy of the composite hydrogel in promoting bone defect repair and regeneration in an osteoporotic model was further validated by in vivo findings. In summary, the composite hydrogel exhibits potential as a viable approach to address osteoporotic bone defects by harmonizing osteogenesis and osteoclast activity, modulating the microenvironment of bone injuries, and reducing inflammation. Consequently, it presents a viable strategy for the efficient repair of bone defects.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).