通过深度传输强化学习优化无功功率,高效适应多种场景

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Congbo Bi , Di Liu , Lipeng Zhu , Chao Lu , Shiyang Li , Yingqi Tang
{"title":"通过深度传输强化学习优化无功功率,高效适应多种场景","authors":"Congbo Bi ,&nbsp;Di Liu ,&nbsp;Lipeng Zhu ,&nbsp;Chao Lu ,&nbsp;Shiyang Li ,&nbsp;Yingqi Tang","doi":"10.1016/j.ijepes.2024.110376","DOIUrl":null,"url":null,"abstract":"<div><div>Fast reactive power optimization policy-making for various operating scenarios is an important part of power system dispatch. Existing reinforcement learning algorithms alleviate the computational complexity in optimization but suffer from the inefficiency of model retraining for different operating scenarios. To solve the above problems, this paper raises a data-efficient transfer reinforcement learning-based reactive power optimization framework. The proposed framework transfers knowledge through two phases: generic state representation in the original scenario and specific dynamic learning in multiple target scenarios. A Q-network structure that separately extracts state and action dynamics is designed to learn generalizable state representations and enable generic knowledge transfer. Supervised learning is applied in specific dynamic learning for extracting unique dynamics from offline data, which improves data efficiency and speeds up knowledge transfer. Finally, the proposed framework is tested on the IEEE 39-bus system and the realistic Guangdong provincial power grid, demonstrating its effectiveness and reliability.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"164 ","pages":"Article 110376"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactive power optimization via deep transfer reinforcement learning for efficient adaptation to multiple scenarios\",\"authors\":\"Congbo Bi ,&nbsp;Di Liu ,&nbsp;Lipeng Zhu ,&nbsp;Chao Lu ,&nbsp;Shiyang Li ,&nbsp;Yingqi Tang\",\"doi\":\"10.1016/j.ijepes.2024.110376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fast reactive power optimization policy-making for various operating scenarios is an important part of power system dispatch. Existing reinforcement learning algorithms alleviate the computational complexity in optimization but suffer from the inefficiency of model retraining for different operating scenarios. To solve the above problems, this paper raises a data-efficient transfer reinforcement learning-based reactive power optimization framework. The proposed framework transfers knowledge through two phases: generic state representation in the original scenario and specific dynamic learning in multiple target scenarios. A Q-network structure that separately extracts state and action dynamics is designed to learn generalizable state representations and enable generic knowledge transfer. Supervised learning is applied in specific dynamic learning for extracting unique dynamics from offline data, which improves data efficiency and speeds up knowledge transfer. Finally, the proposed framework is tested on the IEEE 39-bus system and the realistic Guangdong provincial power grid, demonstrating its effectiveness and reliability.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"164 \",\"pages\":\"Article 110376\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061524005994\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524005994","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

针对不同运行情况的快速无功功率优化决策是电力系统调度的重要组成部分。现有的强化学习算法可减轻优化过程中的计算复杂度,但存在针对不同运行场景重新训练模型的低效率问题。为解决上述问题,本文提出了一种基于数据高效传输强化学习的无功优化框架。所提出的框架通过两个阶段转移知识:原始场景中的通用状态表示和多个目标场景中的特定动态学习。本文设计了一个分别提取状态和行动动态的 Q 网络结构,以学习可通用的状态表示并实现通用知识转移。在特定动态学习中应用了监督学习,以便从离线数据中提取独特的动态,从而提高了数据效率,加快了知识转移。最后,在 IEEE 39 总线系统和现实的广东省电网上测试了所提出的框架,证明了其有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reactive power optimization via deep transfer reinforcement learning for efficient adaptation to multiple scenarios
Fast reactive power optimization policy-making for various operating scenarios is an important part of power system dispatch. Existing reinforcement learning algorithms alleviate the computational complexity in optimization but suffer from the inefficiency of model retraining for different operating scenarios. To solve the above problems, this paper raises a data-efficient transfer reinforcement learning-based reactive power optimization framework. The proposed framework transfers knowledge through two phases: generic state representation in the original scenario and specific dynamic learning in multiple target scenarios. A Q-network structure that separately extracts state and action dynamics is designed to learn generalizable state representations and enable generic knowledge transfer. Supervised learning is applied in specific dynamic learning for extracting unique dynamics from offline data, which improves data efficiency and speeds up knowledge transfer. Finally, the proposed framework is tested on the IEEE 39-bus system and the realistic Guangdong provincial power grid, demonstrating its effectiveness and reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信