Li Yang , Aitian Li , Weina Yu , Huishang Wang , Lei Zhang , Dan Wang , Ying Wang , Ru Zhang , Qingyang Lei , Zhangnan Liu , Shanshan Zhen , Haiming Qin , Yaqing Liu , Yang Yang , Xian-Lu Song , Yi Zhang
{"title":"阻断嘌呤代谢可逆转巨噬细胞免疫抑制,增强非小细胞肺癌的抗肿瘤免疫力","authors":"Li Yang , Aitian Li , Weina Yu , Huishang Wang , Lei Zhang , Dan Wang , Ying Wang , Ru Zhang , Qingyang Lei , Zhangnan Liu , Shanshan Zhen , Haiming Qin , Yaqing Liu , Yang Yang , Xian-Lu Song , Yi Zhang","doi":"10.1016/j.drup.2024.101175","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>Immune checkpoint blockade therapy is not effective in most patients with non-small cell lung cancer (NSCLC) due to the immunosuppressive tumor microenvironment. Macrophages are key components of tumor-infiltrating immune cells and play a critical role in immunosuppression, which can be mediated by cell-intrinsic metabolism. This study aimed to evaluate whether macrophages regulate NSCLC progression through metabolic crosstalk with cancer cells and affect immunotherapy efficacy.</div></div><div><h3>Methods</h3><div>The macrophage landscape of NSCLC tissues were analyzed by single-cell sequencing and verified through flow cytometry and immunofluorescence. Multiplex assay, single-cell sequencing data, ELISA, immunofluorescence, and RNA-seq et al. were used to investigate and verify the mechanism of macrophage-mediated metabolic regulation on immunosuppression. The tumor-bearing model was established in C57BL/6 J mice to explore in vivo efficacy.</div></div><div><h3>Results</h3><div>We found that tumor tissue-derived macrophages exhibited an anti-inflammatory phenotype and had a prognostic value for NSCLC. NSCLC cell-secreted CXCL8 recruited macrophages from peritumor tissues to tumor sites and promoted programmed death-ligand 1 (PD-L1) expression by activating purine metabolism with increasing xanthine dehydrogenase and uric acid production. Moreover, purine metabolism-mediated macrophage immunosuppression was dependent on NLRP3/caspase-1/IL-1β signaling. Blockade of purine metabolism signaling enhanced anti-tumor immunity and the efficacy of anti-PD-L1 therapy.</div></div><div><h3>Conclusions</h3><div>Collectively, our findings reveal a key role of purine metabolism in macrophage immunosuppression and suggest that blockade of purine metabolism combined with immune checkpoint blockade could provide synergistic effects in NSCLC treatment.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"78 ","pages":"Article 101175"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blockade of purine metabolism reverses macrophage immunosuppression and enhances anti-tumor immunity in non-small cell lung cancer\",\"authors\":\"Li Yang , Aitian Li , Weina Yu , Huishang Wang , Lei Zhang , Dan Wang , Ying Wang , Ru Zhang , Qingyang Lei , Zhangnan Liu , Shanshan Zhen , Haiming Qin , Yaqing Liu , Yang Yang , Xian-Lu Song , Yi Zhang\",\"doi\":\"10.1016/j.drup.2024.101175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Aims</h3><div>Immune checkpoint blockade therapy is not effective in most patients with non-small cell lung cancer (NSCLC) due to the immunosuppressive tumor microenvironment. Macrophages are key components of tumor-infiltrating immune cells and play a critical role in immunosuppression, which can be mediated by cell-intrinsic metabolism. This study aimed to evaluate whether macrophages regulate NSCLC progression through metabolic crosstalk with cancer cells and affect immunotherapy efficacy.</div></div><div><h3>Methods</h3><div>The macrophage landscape of NSCLC tissues were analyzed by single-cell sequencing and verified through flow cytometry and immunofluorescence. Multiplex assay, single-cell sequencing data, ELISA, immunofluorescence, and RNA-seq et al. were used to investigate and verify the mechanism of macrophage-mediated metabolic regulation on immunosuppression. The tumor-bearing model was established in C57BL/6 J mice to explore in vivo efficacy.</div></div><div><h3>Results</h3><div>We found that tumor tissue-derived macrophages exhibited an anti-inflammatory phenotype and had a prognostic value for NSCLC. NSCLC cell-secreted CXCL8 recruited macrophages from peritumor tissues to tumor sites and promoted programmed death-ligand 1 (PD-L1) expression by activating purine metabolism with increasing xanthine dehydrogenase and uric acid production. Moreover, purine metabolism-mediated macrophage immunosuppression was dependent on NLRP3/caspase-1/IL-1β signaling. Blockade of purine metabolism signaling enhanced anti-tumor immunity and the efficacy of anti-PD-L1 therapy.</div></div><div><h3>Conclusions</h3><div>Collectively, our findings reveal a key role of purine metabolism in macrophage immunosuppression and suggest that blockade of purine metabolism combined with immune checkpoint blockade could provide synergistic effects in NSCLC treatment.</div></div>\",\"PeriodicalId\":51022,\"journal\":{\"name\":\"Drug Resistance Updates\",\"volume\":\"78 \",\"pages\":\"Article 101175\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Resistance Updates\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136876462400133X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136876462400133X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Blockade of purine metabolism reverses macrophage immunosuppression and enhances anti-tumor immunity in non-small cell lung cancer
Aims
Immune checkpoint blockade therapy is not effective in most patients with non-small cell lung cancer (NSCLC) due to the immunosuppressive tumor microenvironment. Macrophages are key components of tumor-infiltrating immune cells and play a critical role in immunosuppression, which can be mediated by cell-intrinsic metabolism. This study aimed to evaluate whether macrophages regulate NSCLC progression through metabolic crosstalk with cancer cells and affect immunotherapy efficacy.
Methods
The macrophage landscape of NSCLC tissues were analyzed by single-cell sequencing and verified through flow cytometry and immunofluorescence. Multiplex assay, single-cell sequencing data, ELISA, immunofluorescence, and RNA-seq et al. were used to investigate and verify the mechanism of macrophage-mediated metabolic regulation on immunosuppression. The tumor-bearing model was established in C57BL/6 J mice to explore in vivo efficacy.
Results
We found that tumor tissue-derived macrophages exhibited an anti-inflammatory phenotype and had a prognostic value for NSCLC. NSCLC cell-secreted CXCL8 recruited macrophages from peritumor tissues to tumor sites and promoted programmed death-ligand 1 (PD-L1) expression by activating purine metabolism with increasing xanthine dehydrogenase and uric acid production. Moreover, purine metabolism-mediated macrophage immunosuppression was dependent on NLRP3/caspase-1/IL-1β signaling. Blockade of purine metabolism signaling enhanced anti-tumor immunity and the efficacy of anti-PD-L1 therapy.
Conclusions
Collectively, our findings reveal a key role of purine metabolism in macrophage immunosuppression and suggest that blockade of purine metabolism combined with immune checkpoint blockade could provide synergistic effects in NSCLC treatment.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research