Wenlong Liao , Shouxiang Wang , Dechang Yang , Zhe Yang , Jiannong Fang , Christian Rehtanz , Fernando Porté-Agel
{"title":"负荷预测中的 TimeGPT:大型时间序列模型视角","authors":"Wenlong Liao , Shouxiang Wang , Dechang Yang , Zhe Yang , Jiannong Fang , Christian Rehtanz , Fernando Porté-Agel","doi":"10.1016/j.apenergy.2024.124973","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning models have made significant progress in load forecasting, but their forecast accuracy is limited in cases where historical load data is scarce. Inspired by the outstanding performance of large language models (LLMs) in computer vision and natural language processing, this paper aims to discuss the potential of large time series models in load forecasting with scarce historical data. Specifically, the large time series model is constructed as a time series generative pre-trained transformer (TimeGPT), which is trained on massive and diverse time series datasets consisting of 100 billion data points (e.g., finance, transportation, banking, web traffic, weather, energy, healthcare, etc.). Then, the scarce historical load data is used to fine-tune the TimeGPT, which helps it to adapt to the data distribution and characteristics associated with load forecasting. Simulation results show that TimeGPT outperforms the popular benchmarks for load forecasting on several real datasets with scarce training samples, particularly for short look-ahead times. However, it cannot be guaranteed that TimeGPT is always superior to benchmarks for load forecasting with scarce data, since the performance of TimeGPT may be affected by the distribution differences between the load data and the training data. In practical applications, operators can divide the historical data into a training set and a validation set, and then use the validation set loss to decide whether TimeGPT is the best choice for a specific dataset.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"379 ","pages":"Article 124973"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TimeGPT in load forecasting: A large time series model perspective\",\"authors\":\"Wenlong Liao , Shouxiang Wang , Dechang Yang , Zhe Yang , Jiannong Fang , Christian Rehtanz , Fernando Porté-Agel\",\"doi\":\"10.1016/j.apenergy.2024.124973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine learning models have made significant progress in load forecasting, but their forecast accuracy is limited in cases where historical load data is scarce. Inspired by the outstanding performance of large language models (LLMs) in computer vision and natural language processing, this paper aims to discuss the potential of large time series models in load forecasting with scarce historical data. Specifically, the large time series model is constructed as a time series generative pre-trained transformer (TimeGPT), which is trained on massive and diverse time series datasets consisting of 100 billion data points (e.g., finance, transportation, banking, web traffic, weather, energy, healthcare, etc.). Then, the scarce historical load data is used to fine-tune the TimeGPT, which helps it to adapt to the data distribution and characteristics associated with load forecasting. Simulation results show that TimeGPT outperforms the popular benchmarks for load forecasting on several real datasets with scarce training samples, particularly for short look-ahead times. However, it cannot be guaranteed that TimeGPT is always superior to benchmarks for load forecasting with scarce data, since the performance of TimeGPT may be affected by the distribution differences between the load data and the training data. In practical applications, operators can divide the historical data into a training set and a validation set, and then use the validation set loss to decide whether TimeGPT is the best choice for a specific dataset.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"379 \",\"pages\":\"Article 124973\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924023572\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924023572","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
TimeGPT in load forecasting: A large time series model perspective
Machine learning models have made significant progress in load forecasting, but their forecast accuracy is limited in cases where historical load data is scarce. Inspired by the outstanding performance of large language models (LLMs) in computer vision and natural language processing, this paper aims to discuss the potential of large time series models in load forecasting with scarce historical data. Specifically, the large time series model is constructed as a time series generative pre-trained transformer (TimeGPT), which is trained on massive and diverse time series datasets consisting of 100 billion data points (e.g., finance, transportation, banking, web traffic, weather, energy, healthcare, etc.). Then, the scarce historical load data is used to fine-tune the TimeGPT, which helps it to adapt to the data distribution and characteristics associated with load forecasting. Simulation results show that TimeGPT outperforms the popular benchmarks for load forecasting on several real datasets with scarce training samples, particularly for short look-ahead times. However, it cannot be guaranteed that TimeGPT is always superior to benchmarks for load forecasting with scarce data, since the performance of TimeGPT may be affected by the distribution differences between the load data and the training data. In practical applications, operators can divide the historical data into a training set and a validation set, and then use the validation set loss to decide whether TimeGPT is the best choice for a specific dataset.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.