双重扩散对流的全面回顾:流动几何、外力和多孔介质的影响

IF 6.4 2区 工程技术 Q1 MECHANICS
Mehran Sharifi , Narin Rasouli
{"title":"双重扩散对流的全面回顾:流动几何、外力和多孔介质的影响","authors":"Mehran Sharifi ,&nbsp;Narin Rasouli","doi":"10.1016/j.icheatmasstransfer.2024.108380","DOIUrl":null,"url":null,"abstract":"<div><div>This review investigates Double Diffusive Convection (DDC), a phenomenon where heat and solute concentration diffuse at differing rates, resulting in complex flow dynamics influenced by temperature and concentration gradients. DDC plays a crucial role in various natural and engineered systems, including oceanography, energy systems, and astrophysical contexts. This article synthesizes recent research on flow, heat, and mass transfer in DDC, emphasizing the effects of diverse flow geometries and external forces, including porous media. It examines critical parameters such as buoyancy ratio (<span><math><mi>BR</mi></math></span>), aspect ratio (<span><math><mi>AR</mi></math></span>), Prandtl (<span><math><mi>PR</mi></math></span>), Reynolds (<span><math><mo>Re</mo></math></span>), Rayleigh (<span><math><mi>Ra</mi></math></span>), and Lewis (<span><math><mi>Le</mi></math></span>) numbers, alongside the Hartmann (<span><math><mi>Ha</mi></math></span>), Soret (<span><math><mi>Sr</mi></math></span>), and Dufour (<span><math><mi>Du</mi></math></span>) numbers, highlighting their influence on velocity profiles, entropy generation, and heat/mass transfer rates quantified by Nusselt (<span><math><mi>Nu</mi></math></span>) and Sherwood (<span><math><mi>Sh</mi></math></span>) numbers. The review underscores the significant impact of geometry on DDC outcomes, demonstrating that configurations like rectangular and porous cavities enhance heat transfer efficiencies at elevated Rayleigh numbers. The introduction of nanofluids and variable porosity in porous media further optimizes thermal performance. Additionally, magnetic fields and rotation introduce complexities in flow stability and transfer efficiency, with higher Hartmann numbers leading to a transition from convection-dominated to conduction-dominated heat transfer. The interaction of thermal and solutal diffusion in porous media reveals transitions in stability, influencing flow patterns and convective currents. This comprehensive analysis highlights the vital role of geometrical configurations, fluid properties, and external forces in advancing DDC applications across diverse contexts.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"160 ","pages":"Article 108380"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of double diffusive convection: Effects of flow geometries, external forces, and porous media\",\"authors\":\"Mehran Sharifi ,&nbsp;Narin Rasouli\",\"doi\":\"10.1016/j.icheatmasstransfer.2024.108380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review investigates Double Diffusive Convection (DDC), a phenomenon where heat and solute concentration diffuse at differing rates, resulting in complex flow dynamics influenced by temperature and concentration gradients. DDC plays a crucial role in various natural and engineered systems, including oceanography, energy systems, and astrophysical contexts. This article synthesizes recent research on flow, heat, and mass transfer in DDC, emphasizing the effects of diverse flow geometries and external forces, including porous media. It examines critical parameters such as buoyancy ratio (<span><math><mi>BR</mi></math></span>), aspect ratio (<span><math><mi>AR</mi></math></span>), Prandtl (<span><math><mi>PR</mi></math></span>), Reynolds (<span><math><mo>Re</mo></math></span>), Rayleigh (<span><math><mi>Ra</mi></math></span>), and Lewis (<span><math><mi>Le</mi></math></span>) numbers, alongside the Hartmann (<span><math><mi>Ha</mi></math></span>), Soret (<span><math><mi>Sr</mi></math></span>), and Dufour (<span><math><mi>Du</mi></math></span>) numbers, highlighting their influence on velocity profiles, entropy generation, and heat/mass transfer rates quantified by Nusselt (<span><math><mi>Nu</mi></math></span>) and Sherwood (<span><math><mi>Sh</mi></math></span>) numbers. The review underscores the significant impact of geometry on DDC outcomes, demonstrating that configurations like rectangular and porous cavities enhance heat transfer efficiencies at elevated Rayleigh numbers. The introduction of nanofluids and variable porosity in porous media further optimizes thermal performance. Additionally, magnetic fields and rotation introduce complexities in flow stability and transfer efficiency, with higher Hartmann numbers leading to a transition from convection-dominated to conduction-dominated heat transfer. The interaction of thermal and solutal diffusion in porous media reveals transitions in stability, influencing flow patterns and convective currents. This comprehensive analysis highlights the vital role of geometrical configurations, fluid properties, and external forces in advancing DDC applications across diverse contexts.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"160 \",\"pages\":\"Article 108380\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193324011424\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324011424","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

双扩散对流(DDC)是一种热量和溶质浓度以不同速度扩散的现象,它导致受温度和浓度梯度影响的复杂流动动力学。DDC 在海洋学、能源系统和天体物理学等各种自然和工程系统中发挥着至关重要的作用。本文综述了有关 DDC 中流动、传热和传质的最新研究,强调了各种流动几何形状和外力(包括多孔介质)的影响。文章研究了浮力比 (BR)、纵横比 (AR)、普朗特 (PR)、雷诺数 (Re)、瑞利数 (Ra) 和路易斯数 (Le),以及哈特曼数 (Ha)、索雷特数 (Sr) 和杜富尔数 (Du) 等关键参数,强调了它们对速度剖面、熵的产生以及通过努塞尔特数 (Nu) 和舍伍德数 (Sh) 量化的热量/质量传递率的影响。综述强调了几何形状对 DDC 结果的重大影响,表明矩形和多孔空腔等配置可提高雷利数升高时的传热效率。在多孔介质中引入纳米流体和可变孔隙率可进一步优化热性能。此外,磁场和旋转也给流动稳定性和传导效率带来了复杂性,哈特曼数越高,传热就会从对流为主过渡到传导为主。多孔介质中热扩散和溶质扩散的相互作用揭示了稳定性的转变,影响了流动模式和对流。这项全面的分析强调了几何配置、流体特性和外力在推进不同背景下的 DDC 应用中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive review of double diffusive convection: Effects of flow geometries, external forces, and porous media
This review investigates Double Diffusive Convection (DDC), a phenomenon where heat and solute concentration diffuse at differing rates, resulting in complex flow dynamics influenced by temperature and concentration gradients. DDC plays a crucial role in various natural and engineered systems, including oceanography, energy systems, and astrophysical contexts. This article synthesizes recent research on flow, heat, and mass transfer in DDC, emphasizing the effects of diverse flow geometries and external forces, including porous media. It examines critical parameters such as buoyancy ratio (BR), aspect ratio (AR), Prandtl (PR), Reynolds (Re), Rayleigh (Ra), and Lewis (Le) numbers, alongside the Hartmann (Ha), Soret (Sr), and Dufour (Du) numbers, highlighting their influence on velocity profiles, entropy generation, and heat/mass transfer rates quantified by Nusselt (Nu) and Sherwood (Sh) numbers. The review underscores the significant impact of geometry on DDC outcomes, demonstrating that configurations like rectangular and porous cavities enhance heat transfer efficiencies at elevated Rayleigh numbers. The introduction of nanofluids and variable porosity in porous media further optimizes thermal performance. Additionally, magnetic fields and rotation introduce complexities in flow stability and transfer efficiency, with higher Hartmann numbers leading to a transition from convection-dominated to conduction-dominated heat transfer. The interaction of thermal and solutal diffusion in porous media reveals transitions in stability, influencing flow patterns and convective currents. This comprehensive analysis highlights the vital role of geometrical configurations, fluid properties, and external forces in advancing DDC applications across diverse contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信