通过考虑纳米固体研究多孔碳基体的机械性能:利用分子动力学模拟进行计算研究

IF 6.4 2区 工程技术 Q1 MECHANICS
Shuai Sun , Ali B.M. Ali , Shahram Babadoust , Murtadha M. Al-Zahiwat , Raman Kumar , Rahul Raj Chaudhary , Dilsora Abduvalieva , Soheil Salahshour , Nafiseh Emami
{"title":"通过考虑纳米固体研究多孔碳基体的机械性能:利用分子动力学模拟进行计算研究","authors":"Shuai Sun ,&nbsp;Ali B.M. Ali ,&nbsp;Shahram Babadoust ,&nbsp;Murtadha M. Al-Zahiwat ,&nbsp;Raman Kumar ,&nbsp;Rahul Raj Chaudhary ,&nbsp;Dilsora Abduvalieva ,&nbsp;Soheil Salahshour ,&nbsp;Nafiseh Emami","doi":"10.1016/j.icheatmasstransfer.2024.108399","DOIUrl":null,"url":null,"abstract":"<div><div>This study explored the effect of nanovoid size on the mechanical properties of polymer‑carbon matrices through detailed molecular dynamics simulations. The investigation focused on spherical nanovoids with radii of 5, 7, 10, 12, and 15 Å, evaluating their effects on critical mechanical properties, such as Young's modulus and ultimate strength. The Tersoff potential was employed to accurately model the atomic and mechanical behavior of the polymer‑carbon matrix, considering the presence of these nanovoids. The simulation results indicate that the potential energy and total energy stabilized at −132,279.23 eV and − 131,522.4 eV, respectively, confirming the physical stability of simulated samples. On the other hand, the findings reveal that for a nanovoid radius of 5 Å, the ultimate strength and Young's modulus were 36.41 GPa and 424.93 GPa, respectively. As the radius of nanovoids increased from 5 Å to 15 Å, both ultimate strength and Young's modulus exhibited a decreasing trend, with values dropping from 36.41 GPa and 424.93 GPa to 31.18 GPa and 364.39 GPa, respectively. Moreover, larger nanovoids contributed to increased flexibility and a higher critical strain in the polymer‑carbon matrix. This systematic analysis of nanovoid size effects provided a new perspective on void engineering within composites. By enhancing the theoretical understanding of how void dimensions affected material properties, the study offered significant insights for optimizing the mechanical performance of advanced materials and advancing the field of structural engineering.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"160 ","pages":"Article 108399"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examination of the mechanical properties of porous carbon matrix by considering the Nanovoids: A computational study using molecular dynamics simulation\",\"authors\":\"Shuai Sun ,&nbsp;Ali B.M. Ali ,&nbsp;Shahram Babadoust ,&nbsp;Murtadha M. Al-Zahiwat ,&nbsp;Raman Kumar ,&nbsp;Rahul Raj Chaudhary ,&nbsp;Dilsora Abduvalieva ,&nbsp;Soheil Salahshour ,&nbsp;Nafiseh Emami\",\"doi\":\"10.1016/j.icheatmasstransfer.2024.108399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explored the effect of nanovoid size on the mechanical properties of polymer‑carbon matrices through detailed molecular dynamics simulations. The investigation focused on spherical nanovoids with radii of 5, 7, 10, 12, and 15 Å, evaluating their effects on critical mechanical properties, such as Young's modulus and ultimate strength. The Tersoff potential was employed to accurately model the atomic and mechanical behavior of the polymer‑carbon matrix, considering the presence of these nanovoids. The simulation results indicate that the potential energy and total energy stabilized at −132,279.23 eV and − 131,522.4 eV, respectively, confirming the physical stability of simulated samples. On the other hand, the findings reveal that for a nanovoid radius of 5 Å, the ultimate strength and Young's modulus were 36.41 GPa and 424.93 GPa, respectively. As the radius of nanovoids increased from 5 Å to 15 Å, both ultimate strength and Young's modulus exhibited a decreasing trend, with values dropping from 36.41 GPa and 424.93 GPa to 31.18 GPa and 364.39 GPa, respectively. Moreover, larger nanovoids contributed to increased flexibility and a higher critical strain in the polymer‑carbon matrix. This systematic analysis of nanovoid size effects provided a new perspective on void engineering within composites. By enhancing the theoretical understanding of how void dimensions affected material properties, the study offered significant insights for optimizing the mechanical performance of advanced materials and advancing the field of structural engineering.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"160 \",\"pages\":\"Article 108399\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193324011618\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324011618","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过详细的分子动力学模拟,探讨了纳米形体尺寸对聚合物-碳基质机械性能的影响。研究重点是半径为 5、7、10、12 和 15 Å 的球形纳米空心体,评估它们对杨氏模量和极限强度等关键力学性能的影响。考虑到这些纳米实体的存在,采用了特尔索夫势能来精确模拟聚合物-碳基体的原子和机械行为。模拟结果表明,势能和总能分别稳定在 -132,279.23 eV 和 -131,522.4 eV,证实了模拟样品的物理稳定性。另一方面,研究结果表明,当纳米晶半径为 5 Å 时,极限强度和杨氏模量分别为 36.41 GPa 和 424.93 GPa。随着纳米实体半径从 5 Å 增加到 15 Å,极限强度和杨氏模量均呈下降趋势,分别从 36.41 GPa 和 424.93 GPa 下降到 31.18 GPa 和 364.39 GPa。此外,较大的纳米形体有助于增加聚合物-碳基体的柔韧性和临界应变。这种对纳米空泡尺寸效应的系统分析为复合材料中的空泡工程提供了一个新的视角。通过加强对空隙尺寸如何影响材料性能的理论理解,该研究为优化先进材料的机械性能和推动结构工程领域的发展提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examination of the mechanical properties of porous carbon matrix by considering the Nanovoids: A computational study using molecular dynamics simulation
This study explored the effect of nanovoid size on the mechanical properties of polymer‑carbon matrices through detailed molecular dynamics simulations. The investigation focused on spherical nanovoids with radii of 5, 7, 10, 12, and 15 Å, evaluating their effects on critical mechanical properties, such as Young's modulus and ultimate strength. The Tersoff potential was employed to accurately model the atomic and mechanical behavior of the polymer‑carbon matrix, considering the presence of these nanovoids. The simulation results indicate that the potential energy and total energy stabilized at −132,279.23 eV and − 131,522.4 eV, respectively, confirming the physical stability of simulated samples. On the other hand, the findings reveal that for a nanovoid radius of 5 Å, the ultimate strength and Young's modulus were 36.41 GPa and 424.93 GPa, respectively. As the radius of nanovoids increased from 5 Å to 15 Å, both ultimate strength and Young's modulus exhibited a decreasing trend, with values dropping from 36.41 GPa and 424.93 GPa to 31.18 GPa and 364.39 GPa, respectively. Moreover, larger nanovoids contributed to increased flexibility and a higher critical strain in the polymer‑carbon matrix. This systematic analysis of nanovoid size effects provided a new perspective on void engineering within composites. By enhancing the theoretical understanding of how void dimensions affected material properties, the study offered significant insights for optimizing the mechanical performance of advanced materials and advancing the field of structural engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信