Xian-Wei Cheng , Jia-Yi Song , Zheng-Yi Wang , Jin-Ping Guan , Ya-Wei Zhu
{"title":"植酸盐掺杂炭黑分散体的涤纶/氨纶织物多功能涂层","authors":"Xian-Wei Cheng , Jia-Yi Song , Zheng-Yi Wang , Jin-Ping Guan , Ya-Wei Zhu","doi":"10.1016/j.colsurfa.2024.135809","DOIUrl":null,"url":null,"abstract":"<div><div>The development of multifunctional protective polyester/spandex (T/S) fabrics is both interesting and challenging. In this study, a novel intumescent flame-retardant glyceryl phytate ammonium salt (GPA) was synthesized by using phytic acid. Subsequently, the carbon black (CB) dispersions doped with GPA were prepared and utilized to fabricate black and multifunctional T/S fabrics through a facile pad-curing method. The chemical structure of GPA, color characteristics, anti-ultraviolet and antistatic properties, combustion behavior, flame retardancy and mode of action of the coated T/S fabrics were investigated. The dispersed CB/GPA imparted a pure black color and good color fastness to the coated T/S fabrics. The coated T/S fabrics also exhibited significantly enhanced antistatic and anti-ultraviolet performance (UPF above 800) because of the homogeneous CB coating. Additionally, the coated T/S fabrics demonstrated self-extinguishing ability and a reduced damaged length of approximately 7.5 cm without molten droplets, benefiting from the synergistic combination of GPA and CB. The formation of cross-linked char networks in condensed phase and the trapping of combustible radicals in gas phase synergistically enhanced the flame retardancy of coated T/S fabrics. This study offers a facile and novel strategy to increase the multifunctionality of T/S fabrics and expand their potential applications.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"706 ","pages":"Article 135809"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional coating for polyester/spandex fabric with phytate salt doped carbon black dispersion\",\"authors\":\"Xian-Wei Cheng , Jia-Yi Song , Zheng-Yi Wang , Jin-Ping Guan , Ya-Wei Zhu\",\"doi\":\"10.1016/j.colsurfa.2024.135809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of multifunctional protective polyester/spandex (T/S) fabrics is both interesting and challenging. In this study, a novel intumescent flame-retardant glyceryl phytate ammonium salt (GPA) was synthesized by using phytic acid. Subsequently, the carbon black (CB) dispersions doped with GPA were prepared and utilized to fabricate black and multifunctional T/S fabrics through a facile pad-curing method. The chemical structure of GPA, color characteristics, anti-ultraviolet and antistatic properties, combustion behavior, flame retardancy and mode of action of the coated T/S fabrics were investigated. The dispersed CB/GPA imparted a pure black color and good color fastness to the coated T/S fabrics. The coated T/S fabrics also exhibited significantly enhanced antistatic and anti-ultraviolet performance (UPF above 800) because of the homogeneous CB coating. Additionally, the coated T/S fabrics demonstrated self-extinguishing ability and a reduced damaged length of approximately 7.5 cm without molten droplets, benefiting from the synergistic combination of GPA and CB. The formation of cross-linked char networks in condensed phase and the trapping of combustible radicals in gas phase synergistically enhanced the flame retardancy of coated T/S fabrics. This study offers a facile and novel strategy to increase the multifunctionality of T/S fabrics and expand their potential applications.</div></div>\",\"PeriodicalId\":278,\"journal\":{\"name\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"volume\":\"706 \",\"pages\":\"Article 135809\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927775724026736\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724026736","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Multifunctional coating for polyester/spandex fabric with phytate salt doped carbon black dispersion
The development of multifunctional protective polyester/spandex (T/S) fabrics is both interesting and challenging. In this study, a novel intumescent flame-retardant glyceryl phytate ammonium salt (GPA) was synthesized by using phytic acid. Subsequently, the carbon black (CB) dispersions doped with GPA were prepared and utilized to fabricate black and multifunctional T/S fabrics through a facile pad-curing method. The chemical structure of GPA, color characteristics, anti-ultraviolet and antistatic properties, combustion behavior, flame retardancy and mode of action of the coated T/S fabrics were investigated. The dispersed CB/GPA imparted a pure black color and good color fastness to the coated T/S fabrics. The coated T/S fabrics also exhibited significantly enhanced antistatic and anti-ultraviolet performance (UPF above 800) because of the homogeneous CB coating. Additionally, the coated T/S fabrics demonstrated self-extinguishing ability and a reduced damaged length of approximately 7.5 cm without molten droplets, benefiting from the synergistic combination of GPA and CB. The formation of cross-linked char networks in condensed phase and the trapping of combustible radicals in gas phase synergistically enhanced the flame retardancy of coated T/S fabrics. This study offers a facile and novel strategy to increase the multifunctionality of T/S fabrics and expand their potential applications.
期刊介绍:
Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena.
The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.