{"title":"环形-分裂环形-立方体过渡光子学中的拓扑和曲率效应","authors":"Mikhail Bochkarev , Nikolay Solodovchenko , Kirill Samusev , Mikhail Limonov","doi":"10.1016/j.mattod.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><div>Topological transitions in various materials are actively being studied, including topological quantum phase transitions, going beyond the Landau theory and the concept of the order parameter. Here we propose the concept of a transition between two structures with different topology using the example of the transition between a flat dielectric ring and a split ring and its further unbending into a rectangular Fabry-Pérot resonator. Experimentally and theoretically, we discovered the lifting of the degeneracy of the CW-CCW photonic modes of the ring and the formation of two families: topological, which acquire an additional phase <span><math><mi>π</mi></math></span>, equal to the Berry phase in a thin Möbius strip, and ordinary ones, which do not acquire an additional phase. Topological modes arise due to the gradual “cutting” of one antinode of the field by a gap into two antinodes as the angular size of the gap increases from zero to one degree. Thus, using a topological Fabry-Pérot resonator with variable curvature and fixed length, resonant modes with an arbitrary non-integer number of waves are realized and a new generation of resonators is created with the prospect of unique classical and quantum applications.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 179-186"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology and curvature effects in the photonics of ring – split ring – cuboid transitions\",\"authors\":\"Mikhail Bochkarev , Nikolay Solodovchenko , Kirill Samusev , Mikhail Limonov\",\"doi\":\"10.1016/j.mattod.2024.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Topological transitions in various materials are actively being studied, including topological quantum phase transitions, going beyond the Landau theory and the concept of the order parameter. Here we propose the concept of a transition between two structures with different topology using the example of the transition between a flat dielectric ring and a split ring and its further unbending into a rectangular Fabry-Pérot resonator. Experimentally and theoretically, we discovered the lifting of the degeneracy of the CW-CCW photonic modes of the ring and the formation of two families: topological, which acquire an additional phase <span><math><mi>π</mi></math></span>, equal to the Berry phase in a thin Möbius strip, and ordinary ones, which do not acquire an additional phase. Topological modes arise due to the gradual “cutting” of one antinode of the field by a gap into two antinodes as the angular size of the gap increases from zero to one degree. Thus, using a topological Fabry-Pérot resonator with variable curvature and fixed length, resonant modes with an arbitrary non-integer number of waves are realized and a new generation of resonators is created with the prospect of unique classical and quantum applications.</div></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"80 \",\"pages\":\"Pages 179-186\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124001809\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001809","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Topology and curvature effects in the photonics of ring – split ring – cuboid transitions
Topological transitions in various materials are actively being studied, including topological quantum phase transitions, going beyond the Landau theory and the concept of the order parameter. Here we propose the concept of a transition between two structures with different topology using the example of the transition between a flat dielectric ring and a split ring and its further unbending into a rectangular Fabry-Pérot resonator. Experimentally and theoretically, we discovered the lifting of the degeneracy of the CW-CCW photonic modes of the ring and the formation of two families: topological, which acquire an additional phase , equal to the Berry phase in a thin Möbius strip, and ordinary ones, which do not acquire an additional phase. Topological modes arise due to the gradual “cutting” of one antinode of the field by a gap into two antinodes as the angular size of the gap increases from zero to one degree. Thus, using a topological Fabry-Pérot resonator with variable curvature and fixed length, resonant modes with an arbitrary non-integer number of waves are realized and a new generation of resonators is created with the prospect of unique classical and quantum applications.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.