Kun Liu , Luliang Liao , Lin Li , Muhammad Asif Nawaz , Guangfu Liao , Xianglan Xu
{"title":"直接观察 NiO/CeO2 中随界面变化的活性,实现有效的低温 CO 氧化","authors":"Kun Liu , Luliang Liao , Lin Li , Muhammad Asif Nawaz , Guangfu Liao , Xianglan Xu","doi":"10.1016/j.surfin.2024.105496","DOIUrl":null,"url":null,"abstract":"<div><div>In contemporary catalytic interface exploration, experimental studies often take a backseat to theoretical simulations, hindering the development of pristine catalytic interfaces. This research leverages monolayer dispersion theory to design an efficient CO oxidation catalyst through precise manipulation of non-precious metal NiO<img>CeO<sub>2</sub> interfaces. Employing the pioneering XRD extrapolation method, we fabricated monolayer dispersed Ni-O-Ce and Ce-O-Ni interfaces, unlocking insights into their impact on the CO oxidation mechanism. The method accurately quantified monolayer dispersion capacities: 0.526 mmol NiO/(100 m<sup>2</sup> CeO<sub>2</sub>) for NiO/CeO<sub>2</sub> and 0.0638 mmol CeO<sub>2</sub>/(100 m<sup>2</sup> NiO) for CeO<sub>2</sub>/NiO, revealing intricate interactions between active components and supports. Utilizing numerical values derived from monolayer dispersion theory, we constructed CeO<sub>2</sub>-supported NiO (Ni-O-Ce) and NiO-supported CeO<sub>2</sub> (Ce-O-Ni) catalysts in a monolayer dispersed state. The Ni-O-Ce interface, generating abundant oxygen vacancies, significantly enhanced CO adsorption and facilitated surface reactive oxygen species production, leading to a remarkable 14-fold increase in intrinsic CO oxidation activity and a notable 4.2-fold improvement in water resistance. Integrating XRD extrapolation, H<sub>2</sub>-TPR, O<sub>2</sub>-TPD, CO-TPD, XPS, Raman, and <em>in situ</em> IR techniques, our study demonstrates the feasibility of crafting efficient catalysts with monolayer dispersed atomic-scale catalytic interfaces to elucidate the mechanisms underlying catalytic interface effects on CO oxidation.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"56 ","pages":"Article 105496"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct observation of interface-dependent activity in NiO/CeO2 for effective low-temperature CO oxidation\",\"authors\":\"Kun Liu , Luliang Liao , Lin Li , Muhammad Asif Nawaz , Guangfu Liao , Xianglan Xu\",\"doi\":\"10.1016/j.surfin.2024.105496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In contemporary catalytic interface exploration, experimental studies often take a backseat to theoretical simulations, hindering the development of pristine catalytic interfaces. This research leverages monolayer dispersion theory to design an efficient CO oxidation catalyst through precise manipulation of non-precious metal NiO<img>CeO<sub>2</sub> interfaces. Employing the pioneering XRD extrapolation method, we fabricated monolayer dispersed Ni-O-Ce and Ce-O-Ni interfaces, unlocking insights into their impact on the CO oxidation mechanism. The method accurately quantified monolayer dispersion capacities: 0.526 mmol NiO/(100 m<sup>2</sup> CeO<sub>2</sub>) for NiO/CeO<sub>2</sub> and 0.0638 mmol CeO<sub>2</sub>/(100 m<sup>2</sup> NiO) for CeO<sub>2</sub>/NiO, revealing intricate interactions between active components and supports. Utilizing numerical values derived from monolayer dispersion theory, we constructed CeO<sub>2</sub>-supported NiO (Ni-O-Ce) and NiO-supported CeO<sub>2</sub> (Ce-O-Ni) catalysts in a monolayer dispersed state. The Ni-O-Ce interface, generating abundant oxygen vacancies, significantly enhanced CO adsorption and facilitated surface reactive oxygen species production, leading to a remarkable 14-fold increase in intrinsic CO oxidation activity and a notable 4.2-fold improvement in water resistance. Integrating XRD extrapolation, H<sub>2</sub>-TPR, O<sub>2</sub>-TPD, CO-TPD, XPS, Raman, and <em>in situ</em> IR techniques, our study demonstrates the feasibility of crafting efficient catalysts with monolayer dispersed atomic-scale catalytic interfaces to elucidate the mechanisms underlying catalytic interface effects on CO oxidation.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"56 \",\"pages\":\"Article 105496\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024016523\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024016523","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
在当代的催化界面探索中,实验研究往往落后于理论模拟,阻碍了原始催化界面的开发。本研究利用单层分散理论,通过精确操纵非贵金属 NiOCeO2 界面,设计出一种高效的 CO 氧化催化剂。利用开创性的 XRD 外推法,我们制备了单层分散的 Ni-O-Ce 和 Ce-O-Ni 界面,揭示了它们对 CO 氧化机理的影响。该方法准确量化了单层分散能力:NiO/CeO2 的单层分散能力为 0.526 mmol NiO/(100 m2 CeO2),CeO2/NiO 的单层分散能力为 0.0638 mmol CeO2/(100 m2 NiO),揭示了活性成分与支撑物之间错综复杂的相互作用。利用单层分散理论得出的数值,我们构建了处于单层分散状态的 CeO2 支承的 NiO(Ni-O-Ce)和 NiO 支承的 CeO2(Ce-O-Ni)催化剂。Ni-O-Ce 界面产生大量氧空位,显著增强了对 CO 的吸附,促进了表面活性氧的产生,从而使 CO 的内在氧化活性显著提高了 14 倍,耐水性显著提高了 4.2 倍。我们的研究综合了 XRD 推断、H2-TPR、O2-TPD、CO-TPD、XPS、拉曼和原位红外技术,证明了制作具有单层分散原子尺度催化界面的高效催化剂的可行性,从而阐明了催化界面对 CO 氧化的影响机制。
Direct observation of interface-dependent activity in NiO/CeO2 for effective low-temperature CO oxidation
In contemporary catalytic interface exploration, experimental studies often take a backseat to theoretical simulations, hindering the development of pristine catalytic interfaces. This research leverages monolayer dispersion theory to design an efficient CO oxidation catalyst through precise manipulation of non-precious metal NiOCeO2 interfaces. Employing the pioneering XRD extrapolation method, we fabricated monolayer dispersed Ni-O-Ce and Ce-O-Ni interfaces, unlocking insights into their impact on the CO oxidation mechanism. The method accurately quantified monolayer dispersion capacities: 0.526 mmol NiO/(100 m2 CeO2) for NiO/CeO2 and 0.0638 mmol CeO2/(100 m2 NiO) for CeO2/NiO, revealing intricate interactions between active components and supports. Utilizing numerical values derived from monolayer dispersion theory, we constructed CeO2-supported NiO (Ni-O-Ce) and NiO-supported CeO2 (Ce-O-Ni) catalysts in a monolayer dispersed state. The Ni-O-Ce interface, generating abundant oxygen vacancies, significantly enhanced CO adsorption and facilitated surface reactive oxygen species production, leading to a remarkable 14-fold increase in intrinsic CO oxidation activity and a notable 4.2-fold improvement in water resistance. Integrating XRD extrapolation, H2-TPR, O2-TPD, CO-TPD, XPS, Raman, and in situ IR techniques, our study demonstrates the feasibility of crafting efficient catalysts with monolayer dispersed atomic-scale catalytic interfaces to elucidate the mechanisms underlying catalytic interface effects on CO oxidation.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)