Ziheng Zhan , Yan Su , Mingzhu Xie , Yinfeng Li , Yong Shuai , Zhaolong Wang
{"title":"仿生太阳能水蒸发技术的最新进展与挑战","authors":"Ziheng Zhan , Yan Su , Mingzhu Xie , Yinfeng Li , Yong Shuai , Zhaolong Wang","doi":"10.1016/j.mattod.2024.08.018","DOIUrl":null,"url":null,"abstract":"<div><div>Solar water evaporation is a sustainable, efficient, and environmental friendly solution to the freshwater production and energy crisis, which is drawing intensive research interest in recent years all over the world. In this work, we systematically summarize the design principles and recent progress of solar evaporators inspired by nature. Evaporation systems with bionic structures such as roots, stems, leaves, and even animal tissues can not only promote water transport inside the absorbers but also accelerate the solar water evaporation process, leading to a high evaporation rate and energy conversion efficiency. Most significantly, the promising applications of solar vapor generation for seawater desalination, water purification, electricity generation, evaporative cooling and photocatalytic degradation are also highlighted. Finally, the prospects and challenges of the future development of solar water evaporation are discussed in detail.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 529-548"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances and challenges for bionic solar water evaporation\",\"authors\":\"Ziheng Zhan , Yan Su , Mingzhu Xie , Yinfeng Li , Yong Shuai , Zhaolong Wang\",\"doi\":\"10.1016/j.mattod.2024.08.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar water evaporation is a sustainable, efficient, and environmental friendly solution to the freshwater production and energy crisis, which is drawing intensive research interest in recent years all over the world. In this work, we systematically summarize the design principles and recent progress of solar evaporators inspired by nature. Evaporation systems with bionic structures such as roots, stems, leaves, and even animal tissues can not only promote water transport inside the absorbers but also accelerate the solar water evaporation process, leading to a high evaporation rate and energy conversion efficiency. Most significantly, the promising applications of solar vapor generation for seawater desalination, water purification, electricity generation, evaporative cooling and photocatalytic degradation are also highlighted. Finally, the prospects and challenges of the future development of solar water evaporation are discussed in detail.</div></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"80 \",\"pages\":\"Pages 529-548\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124001834\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001834","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent advances and challenges for bionic solar water evaporation
Solar water evaporation is a sustainable, efficient, and environmental friendly solution to the freshwater production and energy crisis, which is drawing intensive research interest in recent years all over the world. In this work, we systematically summarize the design principles and recent progress of solar evaporators inspired by nature. Evaporation systems with bionic structures such as roots, stems, leaves, and even animal tissues can not only promote water transport inside the absorbers but also accelerate the solar water evaporation process, leading to a high evaporation rate and energy conversion efficiency. Most significantly, the promising applications of solar vapor generation for seawater desalination, water purification, electricity generation, evaporative cooling and photocatalytic degradation are also highlighted. Finally, the prospects and challenges of the future development of solar water evaporation are discussed in detail.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.