拟南芥细胞数量调节因子 6 (BnCNR6) 的表达可使拟南芥耐受铜的影响

IF 4 3区 生物学 Q1 PLANT SCIENCES
Yuanyuan Liu, Yuqi Song, Liu Shi, Jiaying Cao, Zuliang Fan, Wei Zhang, Xi Chen
{"title":"拟南芥细胞数量调节因子 6 (BnCNR6) 的表达可使拟南芥耐受铜的影响","authors":"Yuanyuan Liu,&nbsp;Yuqi Song,&nbsp;Liu Shi,&nbsp;Jiaying Cao,&nbsp;Zuliang Fan,&nbsp;Wei Zhang,&nbsp;Xi Chen","doi":"10.1016/j.jplph.2024.154383","DOIUrl":null,"url":null,"abstract":"<div><div>Copper is an essential but potential toxic micro-nutrient in rapeseed. So far, little is known about the mechanism of rapeseed Cu transport and detoxification. Here, we determined the function of Cu transporter, <em>Brassica napus</em> cell number regulator 6 (BnCNR6), in regulating Cu homeostasis. <em>BnCNR6</em> exhibited higher expression level in euphylla and root tips. It was found that in protoplasts and transgenic plants expressing <em>Pro35S:BnCNR6-GFP</em>, BnCNR6 was localized to the plasma membrane (PM). Expression of <em>BnCNR6</em> in the yeast (<em>Saccharomyces cerevisiae</em>), compensated the Cu hypersensitivity of <em>Δcup2</em> by promoting Cu<sup>2+</sup> efflux. The overexpression of <em>BnCNR6</em> in Arabidopsis <em>athma5</em> mutant restored its growth, increased its photosynthesis, and reduced Cu<sup>2+</sup> concentration in the roots. Furthermore, the roots of <em>BnCNR6</em> overexpression lines had lower net Cu influx than in those of the <em>athma5</em> mutant. These results revealed that BnCNR6 is a PM protein which is useful for detoxification to increase tolerance to Cu toxicity. Collectively, our study provides a theoretical basis for reducing Cu stress in rapeseed.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"Article 154383"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression of Brassica napus cell number regulator 6 (BnCNR6) in Arabidopsis thaliana confers tolerance to copper\",\"authors\":\"Yuanyuan Liu,&nbsp;Yuqi Song,&nbsp;Liu Shi,&nbsp;Jiaying Cao,&nbsp;Zuliang Fan,&nbsp;Wei Zhang,&nbsp;Xi Chen\",\"doi\":\"10.1016/j.jplph.2024.154383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Copper is an essential but potential toxic micro-nutrient in rapeseed. So far, little is known about the mechanism of rapeseed Cu transport and detoxification. Here, we determined the function of Cu transporter, <em>Brassica napus</em> cell number regulator 6 (BnCNR6), in regulating Cu homeostasis. <em>BnCNR6</em> exhibited higher expression level in euphylla and root tips. It was found that in protoplasts and transgenic plants expressing <em>Pro35S:BnCNR6-GFP</em>, BnCNR6 was localized to the plasma membrane (PM). Expression of <em>BnCNR6</em> in the yeast (<em>Saccharomyces cerevisiae</em>), compensated the Cu hypersensitivity of <em>Δcup2</em> by promoting Cu<sup>2+</sup> efflux. The overexpression of <em>BnCNR6</em> in Arabidopsis <em>athma5</em> mutant restored its growth, increased its photosynthesis, and reduced Cu<sup>2+</sup> concentration in the roots. Furthermore, the roots of <em>BnCNR6</em> overexpression lines had lower net Cu influx than in those of the <em>athma5</em> mutant. These results revealed that BnCNR6 is a PM protein which is useful for detoxification to increase tolerance to Cu toxicity. Collectively, our study provides a theoretical basis for reducing Cu stress in rapeseed.</div></div>\",\"PeriodicalId\":16808,\"journal\":{\"name\":\"Journal of plant physiology\",\"volume\":\"304 \",\"pages\":\"Article 154383\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0176161724002141\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724002141","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

铜是油菜籽中不可或缺的微量营养元素,但具有潜在毒性。迄今为止,人们对油菜铜的转运和解毒机制知之甚少。在此,我们测定了铜转运体甘蓝型油菜细胞数调节因子 6(BnCNR6)在调节铜平衡中的功能。BnCNR6 在小球藻和根尖有较高的表达水平。研究发现,在表达 Pro35S:BnCNR6-GFP 的原生质体和转基因植株中,BnCNR6 定位于质膜(PM)。在酵母(Saccharomyces cerevisiae)中表达 BnCNR6 可通过促进 Cu2+ 外流来补偿 Δcup2 对铜的过敏性。在拟南芥 athma5 突变体中过表达 BnCNR6 能恢复其生长,提高其光合作用,并降低根中的 Cu2+ 浓度。此外,与 athma5 突变体相比,BnCNR6 过表达株系根部的净铜流入量更低。这些结果表明,BnCNR6 是一种 PM 蛋白,可用于解毒以提高对铜毒性的耐受性。总之,我们的研究为减轻油菜籽的铜胁迫提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expression of Brassica napus cell number regulator 6 (BnCNR6) in Arabidopsis thaliana confers tolerance to copper
Copper is an essential but potential toxic micro-nutrient in rapeseed. So far, little is known about the mechanism of rapeseed Cu transport and detoxification. Here, we determined the function of Cu transporter, Brassica napus cell number regulator 6 (BnCNR6), in regulating Cu homeostasis. BnCNR6 exhibited higher expression level in euphylla and root tips. It was found that in protoplasts and transgenic plants expressing Pro35S:BnCNR6-GFP, BnCNR6 was localized to the plasma membrane (PM). Expression of BnCNR6 in the yeast (Saccharomyces cerevisiae), compensated the Cu hypersensitivity of Δcup2 by promoting Cu2+ efflux. The overexpression of BnCNR6 in Arabidopsis athma5 mutant restored its growth, increased its photosynthesis, and reduced Cu2+ concentration in the roots. Furthermore, the roots of BnCNR6 overexpression lines had lower net Cu influx than in those of the athma5 mutant. These results revealed that BnCNR6 is a PM protein which is useful for detoxification to increase tolerance to Cu toxicity. Collectively, our study provides a theoretical basis for reducing Cu stress in rapeseed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of plant physiology
Journal of plant physiology 生物-植物科学
CiteScore
7.20
自引率
4.70%
发文量
196
审稿时长
32 days
期刊介绍: The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication. The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信