利用微极混合纳米流体优化空间相关磁场中的热管理

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Shabbir Ahmad , Elizaldo Domingues dos Santos , Kashif Ali , Hafiz Humais Sultan , Moin-ud-Din Junjua , Farhan Lafta Rashid , Yashar Aryanfar , Tamer M. Khalaf , Ahmed S. Hendy
{"title":"利用微极混合纳米流体优化空间相关磁场中的热管理","authors":"Shabbir Ahmad ,&nbsp;Elizaldo Domingues dos Santos ,&nbsp;Kashif Ali ,&nbsp;Hafiz Humais Sultan ,&nbsp;Moin-ud-Din Junjua ,&nbsp;Farhan Lafta Rashid ,&nbsp;Yashar Aryanfar ,&nbsp;Tamer M. Khalaf ,&nbsp;Ahmed S. Hendy","doi":"10.1016/j.jrras.2024.101216","DOIUrl":null,"url":null,"abstract":"<div><div>Vortices play a pivotal role in fluid dynamics by enhancing fluid mixing and mass transport, making them crucial for numerous applications. Hybrid nanofluids, combining two types of nanoparticles, offer superior thermal conductivity and heat transfer compared to conventional nanofluids. This study examines the influence of localized magnetic fields on vortex dynamics in a micropolar hybrid nanofluid flow within a vertically oriented cavity, driven by moving horizontal lids along the +ve axis. Magnetic field strips are applied horizontally and vertically to control flow behavior. Using MATLAB-based algorithms and the finite difference method, we solve the governing equations of flow and heat transfer. Key parameters, including magnetic field strength, nanoparticle volume fraction, and Reynolds number, are analyzed for their effects on flow structures and temperature profiles. Results indicate that the magnetic field reduces microrotation and enhances laminar flow, influencing stress distribution and temperature gradients. These insights are valuable for optimizing microfluidic devices, heat exchangers, and drug delivery systems, where control over flow dynamics and temperature is essential.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 1","pages":"Article 101216"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing thermal management with micropolar hybrid nanofluids in spatially dependent magnetic fields\",\"authors\":\"Shabbir Ahmad ,&nbsp;Elizaldo Domingues dos Santos ,&nbsp;Kashif Ali ,&nbsp;Hafiz Humais Sultan ,&nbsp;Moin-ud-Din Junjua ,&nbsp;Farhan Lafta Rashid ,&nbsp;Yashar Aryanfar ,&nbsp;Tamer M. Khalaf ,&nbsp;Ahmed S. Hendy\",\"doi\":\"10.1016/j.jrras.2024.101216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vortices play a pivotal role in fluid dynamics by enhancing fluid mixing and mass transport, making them crucial for numerous applications. Hybrid nanofluids, combining two types of nanoparticles, offer superior thermal conductivity and heat transfer compared to conventional nanofluids. This study examines the influence of localized magnetic fields on vortex dynamics in a micropolar hybrid nanofluid flow within a vertically oriented cavity, driven by moving horizontal lids along the +ve axis. Magnetic field strips are applied horizontally and vertically to control flow behavior. Using MATLAB-based algorithms and the finite difference method, we solve the governing equations of flow and heat transfer. Key parameters, including magnetic field strength, nanoparticle volume fraction, and Reynolds number, are analyzed for their effects on flow structures and temperature profiles. Results indicate that the magnetic field reduces microrotation and enhances laminar flow, influencing stress distribution and temperature gradients. These insights are valuable for optimizing microfluidic devices, heat exchangers, and drug delivery systems, where control over flow dynamics and temperature is essential.</div></div>\",\"PeriodicalId\":16920,\"journal\":{\"name\":\"Journal of Radiation Research and Applied Sciences\",\"volume\":\"18 1\",\"pages\":\"Article 101216\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research and Applied Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S168785072400400X\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S168785072400400X","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

涡流通过加强流体混合和质量传输,在流体动力学中发挥着举足轻重的作用,因此在许多应用中都至关重要。混合纳米流体结合了两种类型的纳米粒子,与传统纳米流体相比,具有更优越的导热性和传热性。本研究探讨了局部磁场对垂直方向空腔内微极性混合纳米流体涡流动力学的影响,该空腔由沿 +ve 轴移动的水平盖驱动。水平和垂直方向的磁场条用于控制流动行为。利用基于 MATLAB 的算法和有限差分法,我们求解了流动和传热的控制方程。我们分析了磁场强度、纳米颗粒体积分数和雷诺数等关键参数对流动结构和温度曲线的影响。结果表明,磁场可减少微浮选,增强层流,影响应力分布和温度梯度。这些见解对于优化微流体设备、热交换器和药物输送系统非常有价值,因为在这些设备中,对流动动力学和温度的控制至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing thermal management with micropolar hybrid nanofluids in spatially dependent magnetic fields
Vortices play a pivotal role in fluid dynamics by enhancing fluid mixing and mass transport, making them crucial for numerous applications. Hybrid nanofluids, combining two types of nanoparticles, offer superior thermal conductivity and heat transfer compared to conventional nanofluids. This study examines the influence of localized magnetic fields on vortex dynamics in a micropolar hybrid nanofluid flow within a vertically oriented cavity, driven by moving horizontal lids along the +ve axis. Magnetic field strips are applied horizontally and vertically to control flow behavior. Using MATLAB-based algorithms and the finite difference method, we solve the governing equations of flow and heat transfer. Key parameters, including magnetic field strength, nanoparticle volume fraction, and Reynolds number, are analyzed for their effects on flow structures and temperature profiles. Results indicate that the magnetic field reduces microrotation and enhances laminar flow, influencing stress distribution and temperature gradients. These insights are valuable for optimizing microfluidic devices, heat exchangers, and drug delivery systems, where control over flow dynamics and temperature is essential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信