具有容差能力的分时调度

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
George Karakostas , Stavros G. Kolliopoulos
{"title":"具有容差能力的分时调度","authors":"George Karakostas ,&nbsp;Stavros G. Kolliopoulos","doi":"10.1016/j.jcss.2024.103605","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by time-sharing systems with deadlines, we introduce the study of the following problem. We are given <em>m</em> machines and <em>n</em> jobs, as well as a set of <em>tolerance capacities</em> <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>≥</mo><mn>0</mn></math></span> for every job <em>j</em> and machine <em>i</em>. Can we assign the jobs so that, if job <em>j</em> ends up on machine <em>i</em>, the total size of jobs that are processed on <em>i</em> is at most <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span>? We define two natural optimization versions: (i) Maximize the total weight of jobs that can be assigned without violating the tolerance capacities. (ii) Minimize the amount <span><math><mi>ρ</mi><mo>≥</mo><mn>1</mn></math></span> by which capacities have to be scaled so that all jobs can be assigned. For (i), we provide constant-factor approximations even in the presence of additional side-constraints. For (ii), we provide a strong inapproximability result and integrality gap lower bounds for two key relaxations.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"148 ","pages":"Article 103605"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-sharing scheduling with tolerance capacities\",\"authors\":\"George Karakostas ,&nbsp;Stavros G. Kolliopoulos\",\"doi\":\"10.1016/j.jcss.2024.103605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by time-sharing systems with deadlines, we introduce the study of the following problem. We are given <em>m</em> machines and <em>n</em> jobs, as well as a set of <em>tolerance capacities</em> <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>≥</mo><mn>0</mn></math></span> for every job <em>j</em> and machine <em>i</em>. Can we assign the jobs so that, if job <em>j</em> ends up on machine <em>i</em>, the total size of jobs that are processed on <em>i</em> is at most <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span>? We define two natural optimization versions: (i) Maximize the total weight of jobs that can be assigned without violating the tolerance capacities. (ii) Minimize the amount <span><math><mi>ρ</mi><mo>≥</mo><mn>1</mn></math></span> by which capacities have to be scaled so that all jobs can be assigned. For (i), we provide constant-factor approximations even in the presence of additional side-constraints. For (ii), we provide a strong inapproximability result and integrality gap lower bounds for two key relaxations.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"148 \",\"pages\":\"Article 103605\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000024001004\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024001004","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

受有截止日期的分时系统的启发,我们引入了对以下问题的研究。我们给定了 m 台机器和 n 个作业,以及每个作业 j 和机器 i 的一组容差能力 uij≥0。我们能否分配作业,使作业 j 最终在机器 i 上处理时,在机器 i 上处理的作业的总大小最多为 uij?我们定义了两个自然优化版本:(i) 在不违反容差能力的情况下,最大化可分配作业的总重量。(ii) 最小化ρ≥1,ρ≥1 是为使所有工作都能分配而必须缩放的容量。对于 (i),我们提供了恒因子近似值,即使存在额外的附带约束。对于 (ii),我们提供了一个强大的不可逼近性结果和两个关键松弛的积分差距下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-sharing scheduling with tolerance capacities
Motivated by time-sharing systems with deadlines, we introduce the study of the following problem. We are given m machines and n jobs, as well as a set of tolerance capacities uij0 for every job j and machine i. Can we assign the jobs so that, if job j ends up on machine i, the total size of jobs that are processed on i is at most uij? We define two natural optimization versions: (i) Maximize the total weight of jobs that can be assigned without violating the tolerance capacities. (ii) Minimize the amount ρ1 by which capacities have to be scaled so that all jobs can be assigned. For (i), we provide constant-factor approximations even in the presence of additional side-constraints. For (ii), we provide a strong inapproximability result and integrality gap lower bounds for two key relaxations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信