{"title":"更高的无扭 Auslander-Reiten 序列和代数的主维","authors":"Tiago Cruz , René Marczinzik","doi":"10.1016/j.jalgebra.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>We generalise a theorem of Tachikawa about reflexive Auslander-Reiten sequences. We apply this to give a new characterisation of the dominant dimension of gendo-symmetric algebras. We also generalise a formula due to Reiten about the dominant dimension of an algebra <em>A</em> and grades of torsion <em>A</em>-modules.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"665 ","pages":"Pages 282-297"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher torsion-free Auslander-Reiten sequences and the dominant dimension of algebras\",\"authors\":\"Tiago Cruz , René Marczinzik\",\"doi\":\"10.1016/j.jalgebra.2024.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We generalise a theorem of Tachikawa about reflexive Auslander-Reiten sequences. We apply this to give a new characterisation of the dominant dimension of gendo-symmetric algebras. We also generalise a formula due to Reiten about the dominant dimension of an algebra <em>A</em> and grades of torsion <em>A</em>-modules.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"665 \",\"pages\":\"Pages 282-297\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324006033\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324006033","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们概括了立川关于反身奥斯兰德-莱腾序列的定理。我们以此给出了元对称代数的主维的新特征。我们还推广了赖特恩提出的一个关于代数 A 的主维和扭转 A 模量级数的公式。
Higher torsion-free Auslander-Reiten sequences and the dominant dimension of algebras
We generalise a theorem of Tachikawa about reflexive Auslander-Reiten sequences. We apply this to give a new characterisation of the dominant dimension of gendo-symmetric algebras. We also generalise a formula due to Reiten about the dominant dimension of an algebra A and grades of torsion A-modules.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.