高频脉冲电场-乳化剂组合在油包水乳液中的分解机理和应用

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Tao Liu , Bauyrzhan Sarsenbekuly , Wanli Kang
{"title":"高频脉冲电场-乳化剂组合在油包水乳液中的分解机理和应用","authors":"Tao Liu ,&nbsp;Bauyrzhan Sarsenbekuly ,&nbsp;Wanli Kang","doi":"10.1016/j.colsurfa.2024.135846","DOIUrl":null,"url":null,"abstract":"<div><div>High-frequency pulse electric dehydration technology gradually replaced AC (alternating current) and DC (direct current) dehydration because of its technical advantages such as low energy consumption and no electric field collapse. In this paper, a high frequency pulsed electric field-demulsifier combined dehydration technology was proposed. The dehydration performance of high frequency pulsed electric field and the demulsification of high frequency pulsed electric field-demulsifier combined action were analyzed. The effects of pulse amplitude, pulse width ratio, pulse frequency and dehydration time on the dehydration rate of simulated emulsion under high frequency pulsed electric field were discussed, and the optimal electric dehydration parameters were selected. The results show that for the simulated FY crude oil emulsion with a water content of 25 %, the optimal dehydration conditions are pulse amplitude of 1320 V, frequency of 3.86 kHz, pulse width ratio of 75 %, demulsifier AR919 concentration of 60 mg/L, dehydration temperature of 55 °C, and dehydration time of 10 min. Through the study of microscopic water droplet breakdown, the breakdown mechanism of pulsed electric field was revealed: Accumulation by electrophoresis, Dipole coalescence, Accumulation by oscillating. The demulsifier reduced the optimal pulse frequency and pulse width ratio of the pulsed electric field to the demulsification and dehydration of the emulsion, but had no effect on the optimal pulse amplitude. At the same time, the advantages of high frequency pulse electric demulsification in saving energy were calculated. The results show that the dehydration performance of high frequency pulse electric field is much higher than that of AC and DC electric field, and the energy consumption is saved by more than 90 %. The field application also achieved good results.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"707 ","pages":"Article 135846"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breakdown mechanism and application of high frequency pulsed electric field-demulsifier combination on water-in-oil emulsion\",\"authors\":\"Tao Liu ,&nbsp;Bauyrzhan Sarsenbekuly ,&nbsp;Wanli Kang\",\"doi\":\"10.1016/j.colsurfa.2024.135846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-frequency pulse electric dehydration technology gradually replaced AC (alternating current) and DC (direct current) dehydration because of its technical advantages such as low energy consumption and no electric field collapse. In this paper, a high frequency pulsed electric field-demulsifier combined dehydration technology was proposed. The dehydration performance of high frequency pulsed electric field and the demulsification of high frequency pulsed electric field-demulsifier combined action were analyzed. The effects of pulse amplitude, pulse width ratio, pulse frequency and dehydration time on the dehydration rate of simulated emulsion under high frequency pulsed electric field were discussed, and the optimal electric dehydration parameters were selected. The results show that for the simulated FY crude oil emulsion with a water content of 25 %, the optimal dehydration conditions are pulse amplitude of 1320 V, frequency of 3.86 kHz, pulse width ratio of 75 %, demulsifier AR919 concentration of 60 mg/L, dehydration temperature of 55 °C, and dehydration time of 10 min. Through the study of microscopic water droplet breakdown, the breakdown mechanism of pulsed electric field was revealed: Accumulation by electrophoresis, Dipole coalescence, Accumulation by oscillating. The demulsifier reduced the optimal pulse frequency and pulse width ratio of the pulsed electric field to the demulsification and dehydration of the emulsion, but had no effect on the optimal pulse amplitude. At the same time, the advantages of high frequency pulse electric demulsification in saving energy were calculated. The results show that the dehydration performance of high frequency pulse electric field is much higher than that of AC and DC electric field, and the energy consumption is saved by more than 90 %. The field application also achieved good results.</div></div>\",\"PeriodicalId\":278,\"journal\":{\"name\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"volume\":\"707 \",\"pages\":\"Article 135846\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927775724027109\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724027109","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高频脉冲电脱水技术因其能耗低、无电场崩溃等技术优势,逐渐取代了交流(交流电)和直流(直流电)脱水技术。本文提出了一种高频脉冲电场-乳化剂组合脱水技术。分析了高频脉冲电场的脱水性能和高频脉冲电场-乳化剂联合作用的破乳化性能。讨论了脉冲振幅、脉宽比、脉冲频率和脱水时间对高频脉冲电场下模拟乳液脱水率的影响,并选择了最佳电脱水参数。结果表明,对于含水率为 25% 的模拟 FY 原油乳状液,最佳脱水条件为脉冲幅值为 1320 V,频率为 3.86 kHz,脉宽比为 75%,破乳化剂 AR919 浓度为 60 mg/L,脱水温度为 55 °C,脱水时间为 10 min。通过对微观水滴分解的研究,揭示了脉冲电场的分解机理:电泳积累、偶极子凝聚、振荡积累。破乳剂降低了脉冲电场对乳液破乳和脱水的最佳脉冲频率和脉宽比,但对最佳脉冲幅值没有影响。同时,计算了高频脉冲电破乳法在节能方面的优势。结果表明,高频脉冲电场的脱水性能远高于交直流电场,能耗节省 90% 以上。现场应用也取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breakdown mechanism and application of high frequency pulsed electric field-demulsifier combination on water-in-oil emulsion
High-frequency pulse electric dehydration technology gradually replaced AC (alternating current) and DC (direct current) dehydration because of its technical advantages such as low energy consumption and no electric field collapse. In this paper, a high frequency pulsed electric field-demulsifier combined dehydration technology was proposed. The dehydration performance of high frequency pulsed electric field and the demulsification of high frequency pulsed electric field-demulsifier combined action were analyzed. The effects of pulse amplitude, pulse width ratio, pulse frequency and dehydration time on the dehydration rate of simulated emulsion under high frequency pulsed electric field were discussed, and the optimal electric dehydration parameters were selected. The results show that for the simulated FY crude oil emulsion with a water content of 25 %, the optimal dehydration conditions are pulse amplitude of 1320 V, frequency of 3.86 kHz, pulse width ratio of 75 %, demulsifier AR919 concentration of 60 mg/L, dehydration temperature of 55 °C, and dehydration time of 10 min. Through the study of microscopic water droplet breakdown, the breakdown mechanism of pulsed electric field was revealed: Accumulation by electrophoresis, Dipole coalescence, Accumulation by oscillating. The demulsifier reduced the optimal pulse frequency and pulse width ratio of the pulsed electric field to the demulsification and dehydration of the emulsion, but had no effect on the optimal pulse amplitude. At the same time, the advantages of high frequency pulse electric demulsification in saving energy were calculated. The results show that the dehydration performance of high frequency pulse electric field is much higher than that of AC and DC electric field, and the energy consumption is saved by more than 90 %. The field application also achieved good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信