揭示氮和钠共掺杂碳点的激发依赖性荧光,实现对 Fe3+ 和 Ag+ 的双重检测

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Rachmat Waluyo , Jessie Manopo , Isnaeni , Yudi Darma
{"title":"揭示氮和钠共掺杂碳点的激发依赖性荧光,实现对 Fe3+ 和 Ag+ 的双重检测","authors":"Rachmat Waluyo ,&nbsp;Jessie Manopo ,&nbsp;Isnaeni ,&nbsp;Yudi Darma","doi":"10.1016/j.colsurfa.2024.135810","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dot-based fluorescence sensors show great potential for developing metal ion detectors. This study focuses on developing a nanoprobe for the dual detection of different metal ions by harnessing the excitation-dependent fluorescence (EDFL) behavior of nitrogen and sodium co-doped carbon dots (N:Na-CDs). N:Na-CDs were synthesized using a microwave-assisted hydrothermal technique. The synthesized N:Na-CDs exhibited desirable functional groups containing nitrogen and sodium. Both experimental and computational results demonstrate that the presence of nitrogen and sodium-containing groups can modify N:Na-CDs' electronic and chemical structures, thereby inducing EDFL behavior. Interestingly, the different fluorescence centers of N:Na-CDs as a single nanoprobe can be effectively used for selective and sensitive Fe<sup>3+</sup> and Ag<sup>+</sup> detection under 360 and 440 nm excitation wavelengths, respectively. The limit of detection (LOD) of Fe<sup>3+</sup> and Ag<sup>+</sup> separately was found as 0.25 and 0.14 <span><math><mrow><mi>μ</mi><mi>M</mi></mrow></math></span> within concentration ranges spanning 1–100 <span><math><mrow><mi>μ</mi><mi>M</mi></mrow></math></span> for Fe<sup>3+</sup> and 1–200 <span><math><mrow><mi>μ</mi><mi>M</mi></mrow></math></span> for Ag<sup>+</sup>. Finally, the quenching mechanisms of N:Na-CDs due to metal quenchers were elucidated. This study provides insight into understanding the EDFL behavior of N:Na-CDs for effective multimodal sensors in environmental water analysis.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"707 ","pages":"Article 135810"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling excitation-dependent fluorescence of nitrogen and sodium co-doped carbon dots for dual detection of Fe3+ and Ag+\",\"authors\":\"Rachmat Waluyo ,&nbsp;Jessie Manopo ,&nbsp;Isnaeni ,&nbsp;Yudi Darma\",\"doi\":\"10.1016/j.colsurfa.2024.135810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon dot-based fluorescence sensors show great potential for developing metal ion detectors. This study focuses on developing a nanoprobe for the dual detection of different metal ions by harnessing the excitation-dependent fluorescence (EDFL) behavior of nitrogen and sodium co-doped carbon dots (N:Na-CDs). N:Na-CDs were synthesized using a microwave-assisted hydrothermal technique. The synthesized N:Na-CDs exhibited desirable functional groups containing nitrogen and sodium. Both experimental and computational results demonstrate that the presence of nitrogen and sodium-containing groups can modify N:Na-CDs' electronic and chemical structures, thereby inducing EDFL behavior. Interestingly, the different fluorescence centers of N:Na-CDs as a single nanoprobe can be effectively used for selective and sensitive Fe<sup>3+</sup> and Ag<sup>+</sup> detection under 360 and 440 nm excitation wavelengths, respectively. The limit of detection (LOD) of Fe<sup>3+</sup> and Ag<sup>+</sup> separately was found as 0.25 and 0.14 <span><math><mrow><mi>μ</mi><mi>M</mi></mrow></math></span> within concentration ranges spanning 1–100 <span><math><mrow><mi>μ</mi><mi>M</mi></mrow></math></span> for Fe<sup>3+</sup> and 1–200 <span><math><mrow><mi>μ</mi><mi>M</mi></mrow></math></span> for Ag<sup>+</sup>. Finally, the quenching mechanisms of N:Na-CDs due to metal quenchers were elucidated. This study provides insight into understanding the EDFL behavior of N:Na-CDs for effective multimodal sensors in environmental water analysis.</div></div>\",\"PeriodicalId\":278,\"journal\":{\"name\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"volume\":\"707 \",\"pages\":\"Article 135810\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927775724026748\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724026748","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于碳点的荧光传感器显示出开发金属离子探测器的巨大潜力。本研究的重点是利用氮和钠共掺杂碳点(N:Na-CDs)的激发依赖性荧光(EDFL)行为,开发一种用于双重检测不同金属离子的纳米探针。N:Na-CDs 采用微波辅助水热技术合成。合成的 N:Na-CDs 表现出理想的含氮和钠官能团。实验和计算结果表明,含氮和钠基团的存在可以改变 N:Na-CDs 的电子和化学结构,从而诱导 EDFL 行为。有趣的是,作为单一纳米探针,N:Na-CDs 的不同荧光中心可分别在 360 纳米和 440 纳米激发波长下有效地用于选择性和灵敏的 Fe3+ 和 Ag+ 检测。在 Fe3+ 和 Ag+ 的浓度范围分别为 1-100 μM 和 1-200 μM 时,Fe3+ 和 Ag+ 的检测限(LOD)分别为 0.25 μM 和 0.14 μM。最后,还阐明了金属淬灭剂对 N:Na-CDs 的淬灭机制。这项研究为了解 N:Na-CDs 的 EDFL 行为提供了深入的见解,有助于在环境水分析中使用有效的多模态传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling excitation-dependent fluorescence of nitrogen and sodium co-doped carbon dots for dual detection of Fe3+ and Ag+
Carbon dot-based fluorescence sensors show great potential for developing metal ion detectors. This study focuses on developing a nanoprobe for the dual detection of different metal ions by harnessing the excitation-dependent fluorescence (EDFL) behavior of nitrogen and sodium co-doped carbon dots (N:Na-CDs). N:Na-CDs were synthesized using a microwave-assisted hydrothermal technique. The synthesized N:Na-CDs exhibited desirable functional groups containing nitrogen and sodium. Both experimental and computational results demonstrate that the presence of nitrogen and sodium-containing groups can modify N:Na-CDs' electronic and chemical structures, thereby inducing EDFL behavior. Interestingly, the different fluorescence centers of N:Na-CDs as a single nanoprobe can be effectively used for selective and sensitive Fe3+ and Ag+ detection under 360 and 440 nm excitation wavelengths, respectively. The limit of detection (LOD) of Fe3+ and Ag+ separately was found as 0.25 and 0.14 μM within concentration ranges spanning 1–100 μM for Fe3+ and 1–200 μM for Ag+. Finally, the quenching mechanisms of N:Na-CDs due to metal quenchers were elucidated. This study provides insight into understanding the EDFL behavior of N:Na-CDs for effective multimodal sensors in environmental water analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信