{"title":"整数分区中各部分倒数之和的分布","authors":"Byungchan Kim , Eunmi Kim","doi":"10.1016/j.jcta.2024.105982","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the set of partitions of <em>n</em> into distinct parts, and <span><math><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> be the sum of reciprocals of the parts of the partition <em>λ</em>. We show that as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>,<span><span><span><math><mi>E</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mfrac><mrow><mi>log</mi><mo></mo><mo>(</mo><mn>3</mn><mi>n</mi><mo>)</mo></mrow><mrow><mn>4</mn></mrow></mfrac><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>Var</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mfrac><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>24</mn></mrow></mfrac><mo>.</mo></math></span></span></span> Moreover, for <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the set of ordinary partitions of <em>n</em>, we show that as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>,<span><span><span><math><mi>E</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mi>π</mi><msqrt><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mrow></msqrt><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>Var</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mfrac><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>15</mn></mrow></mfrac><mi>n</mi><mo>.</mo></math></span></span></span> To prove these asymptotic formulas in a uniform manner, we derive a general asymptotic formula using Wright's circle method.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105982"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributions of reciprocal sums of parts in integer partitions\",\"authors\":\"Byungchan Kim , Eunmi Kim\",\"doi\":\"10.1016/j.jcta.2024.105982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the set of partitions of <em>n</em> into distinct parts, and <span><math><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> be the sum of reciprocals of the parts of the partition <em>λ</em>. We show that as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>,<span><span><span><math><mi>E</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mfrac><mrow><mi>log</mi><mo></mo><mo>(</mo><mn>3</mn><mi>n</mi><mo>)</mo></mrow><mrow><mn>4</mn></mrow></mfrac><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>Var</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mfrac><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>24</mn></mrow></mfrac><mo>.</mo></math></span></span></span> Moreover, for <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the set of ordinary partitions of <em>n</em>, we show that as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>,<span><span><span><math><mi>E</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mi>π</mi><msqrt><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mrow></msqrt><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>Var</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mfrac><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>15</mn></mrow></mfrac><mi>n</mi><mo>.</mo></math></span></span></span> To prove these asymptotic formulas in a uniform manner, we derive a general asymptotic formula using Wright's circle method.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"211 \",\"pages\":\"Article 105982\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524001213\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524001213","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 Dn 是将 n 分割为不同部分的集合,srp(λ) 是分割 λ 的各部分的倒数之和。 我们证明,当 n→∞ 时,E[srp(λ):λ∈Dn]∼log(3n)4andVar[srp(λ):λ∈Dn]∼π224。此外,对于 n 的普通分区集合 Pn,我们证明当 n→∞ 时,E[srp(λ):λ∈Pn]∼πn6andVar[srp(λ):λ∈Pn]∼π215n。为了统一证明这些渐近公式,我们利用赖特圆法推导出一个一般渐近公式。
Distributions of reciprocal sums of parts in integer partitions
Let be the set of partitions of n into distinct parts, and be the sum of reciprocals of the parts of the partition λ. We show that as , Moreover, for , the set of ordinary partitions of n, we show that as , To prove these asymptotic formulas in a uniform manner, we derive a general asymptotic formula using Wright's circle method.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.